Aretha Franklin – another Neuroendocrine Cancer Ambassador we NEVER had

say a little prayer

On 16th AUG 2018, Publicist Gwendolyn Quinn tells The Associated Press through a family statement that Franklin passed at her home in Detroit. The statement said “Franklin’s official cause of death was due to advanced pancreatic cancer of the neuroendocrine type, which was confirmed by Franklin’s oncologist, Dr. Philip Phillips of Karmanos Cancer Institute” in Detroit.

There are huge differences between Pancreatic Cancer and Neuroendocrine Cancer with a pancreatic primary – click here to read more. 

pancreatic vs neuroendocrine

tmz aretha

Clearly he meant Neuroendocrine Cancer with a pancreatic primary. However, in the fast moving social media world, this is what has gone out with the lazier writers and editors abbreviating it to just Pancreatic Cancer, perhaps because they didn’t see the relevance of the word Neuroendocrine or they didn’t want to confuse the issue.   All of these incorrect posts will now be embedded in the bowels of the internet and used for years to come by those writing about the Queen of Soul.  We in the Neuroendocrine community now have a much harder task because the press releases and her doctor did not articulate the type of disease correctly.  The same thing happened in 2011 with Steve Jobs.  It is considerably frustrating for the Neuroendocrine Cancer community.

However, a celebrity news outlet called TMZ has managed to obtain and publish a copy of her death certificate – you can read their article and see the death certificate by clicking here.  It clearly states “Pancreatic Neuroendocrine Cancer”. This is a contextually significant statement compared to the version of the original cause of death given by her physician and which went viral on the internet inferring that it was Pancreatic Cancer.  Annoyingly, even though they managed to obtain a copy of the certificate, their headline still said Pancreatic Cancer (read the TMZ article here) – please feel free to comment on their site or email the TMZ contact here – eric.page@kcrg.com

I commented as follows: Wrong headline. The certificate clearly states pancreatic “Neuroendocrine Cancer” – a totally different type of cancer, different symptoms, different prognostics, different treatment, different problems. Huge error. Will you be updating it?

They did not update it.

Interestingly the press have been saying Pancreatic Cancer since 2010 despite Aretha keeping her condition private,  However, she came out in 2011 by releasing a statement saying she didn’t understand where ‘Pancreatic Cancer’ came from.


I suspect she knew then it was Neuroendocrine Cancer, obviously from the fact that her doctor told her the surgery would give her another 15-20 years of life – that is certainly not a prognosis you would get with Pancreatic Cancer.

A summary of her cancer experience since 2010 can be found here – not too detailed but useful background.  She had major surgery on December 2nd 2010 (sounds like Whipples?). She wasn’t in good health at diagnosis, with media reports of years of chain smoking, alcoholism, obesity and crash-dieting. She was also diabetic for some year prior to cancer diagnosis.

In one of the better articles from Forbes, they actually stated some words which resonate with the Neuroendocrine Cancer community (see graphic below) – however, the remainder of the article then goes onto to talk about Pancreatic Cancer and not Neuroendocrine Cancer so we lost a massive awareness activity due to the fixation and assumptions with anatomy.

THE HUMAN ANATOMY PROBLEM WITH NEUROENDOCRINE CANCER STRIKES AGAIN.  Read about other errors with celebrities by clicking here

Neuroendocrine Cancer is not a type of another cancer PERIOD

A Neuroendocrine Tumour is NOT

Why do these mistakes happen? 

The Human Anatomy vs cancer type even confuses so called respectable and authoritative cancer organisations. Big hitter organisations such as the American Cancer Society and the US National Cancer Institute fail to list an A to Z list of cancer with Neuroendocrine Tumors / Neoplasms / Cancer / Carcinoma under the letter ‘N’. Instead you can find Gastrointestinal Carcinoid (a term now at least 8 years out of date) and pancreatic and lung NETs under Pancreatic Cancer and Lung Cancer respectively, I’m sure there are other issues.  I have contacted these organisations in the past and hinted there should be a standalone and grouped entry under ‘N’ but this has been totally ignored to date.  While many news outlets have reacted to the rather flimsy and misleading statement coming from the family quoting Aretha’s physician’s words “Pancreatic Cancer of the neuroendocrine type”, medical writers will also take to the internet to research and will find the two ‘big hitter’ websites above and bingo.  To a certain extent I see these issues more in USA than in any other country.

But in the meantime, please note that at least one big cancer organisation looking for changes to the way they display information on NETs as a result of Aretha (read it here) and some credit is due to Chris Nashville Lozina who many of you may know.  However, action speaks louder than words and I will be monitoring their website to see if they actually make the changes they used to jump on the Aretha bandwagon.   It should not be left to patients to do the running here – US NET patient advocate organisations must do more and must do it publicly.

The physician who quoted the cause of death which then went viral on the internet didn’t really do Neuroendocrine Cancer any favours – although we should credit him for leaving the word Neuroendocrine in there. That said, many lazy article writers and media have omitted the word not realising the significance of its meaning, not realising they were then quoting a totally different cancer.  Interestingly her death certificated stated PANCREATIC NEUROENDOCRINE CANCER – that would have been a much better press release.

Some patients are suggesting she has “Carcinoid” but not only is that way off beam, it’s using a term which has been abandoned and is not really good PR for us. In some ways, the ‘C word’ is causing these issues as many physicians make a demarcation line between ‘carcinoid’ and other types of NET associated with one part of the anatomy.

We must stop saying that Neuroendocrine Cancer with a pancreatic primary is a type of Pancreatic Cancer. I think everyone agrees they are different but the KEY POINT is saying or not saying they are a type of Pancreatic Cancer. Saying they are a type of Pancreatic Cancer is not only playing into the hands of Pancreatic Cancer organisations who want to claim the famous icons and their potential fundraising opportunities, but potentially a betrayal of Neuroendocrine Cancer awareness. Only my view though of course.

I will update this article as new information comes out n due course but in the meantime please share using “Neuroendocrine Cancer” as there is much misinformation being spread

RIP Aretha, Queen of Soul R.E.S.P.E.C.T.

ARETHA RESPECT

 

Thanks for reading

Ronny

I’m also active on Facebook.  Like my page for even more news.  I’m also building up this site here: Ronny Allan

Disclaimer

My Diagnosis and Treatment History

Most Popular Posts

Sign up for my twitter newsletter

Read my Cure Magazine contributions

Remember ….. in the war on Neuroendocrine Cancer, let’s not forget to win the battle for better quality of life!

wego blog 2018 winner

Please Share this post

The trouble with the ‘NET’ – Part 1 – Cancer Myths

The trouble with the ‘NET’ Part 1

Certain popular ideas about how cancer starts and spreads – though scientifically wrong, can seem to make sense, especially when those ideas are rooted in old theories. To a certain extent, it can be the case with treatment too. But wrong ideas about cancer can lead to needless worry and even hinder good prevention and treatment decisions.

In a study published last month, a surprising 40% of Americans believe cancer can be cured solely through alternative therapies, according to the American Society of Clinical Oncology (ASCO)’s second annual National Cancer Opinion Survey.  In a similar study in UK, the NHS blamed social media for the spread of fake healthcare news.  Unfortunately social media ‘misinformation’ includes ‘alleged’ cures for various ailments including cancer.  I think we’ve all been there, we check twitter, Facebook, Pinterest etc and we find the ubiquitous miracle cures for every illness under the sun.  Easy to find, easy to read and worryingly, easy to share.  Surely these cures must be true, after all…..it’s on the ‘NET’.

Has wide access to the internet exacerbated this problem? 

The rise of the (Inter)NET has allowed people to use ‘social technology’ to help shape the world’s events and culture. Additionally, the NET has increased the speed of how relationships develop, the way information is shared and (whether you like it or not) how influence can be leveraged for gain.  Facebook has taught us new ways to communicate and collaborate through features like feeds, profiles and groups. At the same time, smartphones and tablets provide mobile and instantaneous access to information from any location.  Whether you like it or not, we are witnessing the power of social media and its effect on society. However, the ‘NET’ can also provide ‘misinformation’ and it’s pretty good at it. 

When I was diagnosed with metastatic Neuroendocrine Tumours (aka ‘NETs’) in 2010, I took to the ‘NET’ to find out about my ‘NETs’ 🙂  However, I soon found out the NET is potentially more dangerous than my NETs.  Put a foot in the wrong place and ‘boom’. Not only can you get easily lost but you end up with dubious information which looks pretty credible. Moreover, in some cases this can be unnecessarily stressful and upsetting for some.  Fortunately I had worked with information technology for years and combined with my sceptical but inquisitive nature, I was able to overcome this problem.  I’m very careful where I look and now use that to my advantage, along with many other savvy cancer patients.  

The champion ‘myth busters’ are the world-renowned Cancer Research UK and I always go there when I see something in the media which sounds too good to be true. For example, there is a 20 year old myth that sugar feeds cancer cells and this seems to be shared by many patients as something which looks true.  It is NOT true and the biggest cancer advocate organisations will all confirm this.  Although research has shown that cancer cells consume more sugar (glucose) than normal cells, no studies have shown that eating sugar will make your cancer worse or that, if you stop eating sugar, your cancer will shrink or disappear.  However, a high-sugar diet may contribute to excess weight gain, and obesity is associated with an increased risk of developing several types of cancer – that is a totally different problem. This is one of a number of cancer myths that seem to continuously patrol the NET, including on patient forums. Take a look at Cancer Research UK’s ‘Don’t believe the hype – 10 cancer myths debunked’.  Whilst you’re there, take a look at their Science blog as they always follow up the most recent headline grabbing newspaper articles claiming to have found the cure for cancer (again).  Cancer Research UK will always provide balanced commentary on these claims.

Cancer Research UK is not alone in trying to help dispel some of these myths – you can also fact check on the big US site Cancer.Gov – see their myth busting article here.

I also like the list from Cancer.NET – American Society of Clinical Oncology (ASCO) – read it here.  (Science Fact or Science Fiction)

You may also enjoy:

Alternative Therapy risks (or lack of) click here

Snake-oil-hero-620x348-hero
“But it works… I read it in the news!”

Miracle Curesclick here

miracle cure banner

Hope is great, false hope is not.

Thanks for reading

Ronny

I’m also active on Facebook.  Like my page for even more news. Help me build up my new site here – click here and ‘Like’

Disclaimer

My Diagnosis and Treatment History

Sign up for my twitter newsletter

Check out my Podcast Interview (click and press play)

Remember ….. in the war on Neuroendocrine Cancer, let’s not forget to win the battle for better quality of life!

wego-blog-2018-winner


patients included

PLEASE SHARE THIS POST

Do you suffer from NET Brain?

This isn't me by the way!
This isn’t me by the way!

The acronym ‘NET‘ (NeuroEndocrine Tumour) can be advantageous to NET advocates and organisations because it occasionally attracts readership from outside the Cancer community when links are accidentally found by ‘surfers’.

NET just also happens to be a common truncation of the word ‘Internet‘ or ‘Network‘.  The vast majority will realise the irrelevance (to them) and move on but 1 or 2 might just hang around and take a look.  Bingo – we have spread a little bit of awareness!

However, these unintended awareness opportunities are not confined to ‘NET’.  According to my blog statistics, other than my name, the most common search phrase which leads to my blog is “No Fear” – the title of one of two blogs I wrote on so-called ‘scanxiety’.  However, I suspect many surfers, base jumpers, bungee jumpers, climbers, extreme sport types and those looking for this famous clothing brand, have now learned something about Neuroendocrine Cancer 🙂  Interestingly, there’s also been a search using the phrase “humor fat german nurse syringe to butt” which found my blog site. I wonder what that was about?

Conversely, NET (Cancer) advocates and patients may come across the term ‘NET’ thinking this is something associated with Neuroendocrine Tumours only to find it’s something about ‘technology’ – I know some NET patients who would be equally happy in both areas! Had he been alive, Steve Jobs (the most famous of all NET patients) would have been happy with this, most likely declaring his condition as ‘iNET‘. However, the diversion during searches is more likely to be in our direction given the extreme popularity of all things ‘NET’ in the IT world vs. the niche and esoteric subject of Neuroendocrine Tumours (NET).

This diversion happened to me last week when I came across an article in the UK news where the term ‘NET’ was used in conjunction with a part of the anatomy, so it immediately caught my eye.  It was a term I hadn’t heard before so thought it might be some new research worth ‘tweeting’ or for further analysis as a potential blog post. The article was entitled “Do you suffer from NET BRAIN?”. However, upon reading, I found it was news of research by a group of psychologists who claimed ‘tech’ (meaning IT/mobiles/tablets etc) makes one in 10 people into “anti-social and distracted narcissists” and that it was now a recognised medical disorder called NET BRAIN.

I laughed out loud (LOL), in fact, I also LMAO and was ROFL. Perhaps this was a reaction to disguise the feeling that I might already be suffering from this condition although I’m content it has nothing to do with my NET (are you confused yet?). Apparently the main symptoms of NET Brain are ‘poor attention span’ (PAS) and a ‘fear of missing out’ (FOMO) and personally I would also add the use of #dafthashtags and extreme use of three and four letter abbreviations (TLA and FLAS) into the mix.

What can I say … I don’t think I have PAS but I confess to sneakily checking twitter/emails/Facebook posts and my blog stats on a (shall we say) ‘frequent’ basis. I am, however, far too old for FOMO – I quite enjoy my 8 hours sleep a night (part of my new normal) and normally have no issues getting to sleep.  The article went on to say ‘people who are classed as passionate and uninhibited are three times more likely to become addicted to technology than others’. I’m passionate about stuff but I’m not that uninhibited (#tooconservative #annoyinglyanalytical).  IT and ‘social media’ (tech) are essential for my mission to spread awareness of NET Cancer – that rules out any narcissist tendencies. However, it does rule in what might be perceived as an addiction, but in reality I’m just a man on a mission.

One thing I did draw out of the article is that ‘NET Brain’ is definitely more prevalent and has a much higher incidence rate than NETs. However, if you actually suffer from FOMO, then you had better sign up for my blog, my daily twitter newsletter and Facebook immediately. I wouldn’t want you to miss anything 🙂

Thanks for reading

Ronny

I’m also active on Facebook. Like my page for even more news. I’m also building up this site here: Ronny Allan

Disclaimer

My Diagnosis and Treatment History

Most Popular Posts

Sign up for my twitter newsletter

Read my Cure Magazine contributions

Remember ….. in the war on Neuroendocrine Cancer, let’s not forget to win the battle for better quality of life!

Ronny Allan is an award winning patient leader and advocate for Neuroendocrine Cancer.

 

 

 

 

Turning a negative into a postive

Lung Cancer Breathalyser
Lung Cancer Breathalyser

Interesting piece in the news today and there’s an amazing story behind it.  The “Lung Cancer Breathalyser” is not a new technology but following the death of his wife from advanced colon cancer, inventor Billy Boyle has produced something good enough to have been accepted on a trial basis by the NHS. If successful, it has the potential to save thousands of lives. Lung Cancer is a big killer and the survival rate at Stage 4 is around 5%. Let’s hope this invention works.

When I was reading the article, I immediately recognised his wife as a blogger I was following and who died on Christmas day after fighting advanced colon cancer for 2 years.  Her final and penultimate blogs are very inspiring and worth reading. Her final post was written by her mother (excuse the swear word on the blog graphic) and the penultimate was published in the Times and went fairly viral on twitter. Her blog site is here (click)

Like my Facebook Page

Follow me on Twitter

Thank you for reading

Ronny

Neuroendocrine Cancer – Hormones

HormonesNET 2018

Until I was diagnosed with metastatic Neuroendocrine Cancer, I didn’t have a clue about hormones – it’s one of those things you just take for granted. However, hormones are vital to human health (male and female) and it’s only when things go wrong you suddenly appreciate how important they are ……..like a lot of other things in life I suppose! The presence of over-secreting hormones (often called peptides throughout) is useful to aid diagnosis albeit it often means the tumours have metastasized. It’s also a frequent indication that the person has an associated NET syndrome.

This is a really complex area and to understand the hormone problems associated with Neuroendocrine Cancer, you need to have a basic knowledge of the endocrine and neuroendocrine systems.  I’ve no intention of explaining that (!) – other than the following high level summary:

  • Glands in the endocrine system use the bloodstream to monitor the body’s internal environment and to communicate with each other through substances called hormones, which are released into the bloodstream.  Endocrine glands include; Pituitary, Hypothalmus, Thymus, Pineal, Testes, Ovaries Thyroid, Adrenal, Parathyroid, Pancreas.
  • A Hormone is a chemical that is made by specialist cells, usually within an endocrine gland, and it is released into the bloodstream to send a message to another part of the body. It is often referred to as a ‘chemical messenger’. In the human body, hormones are used for two types of communication. The first is for communication between two endocrine glands, where one gland releases a hormone which stimulates another target gland to change the levels of hormones that it is releasing. The second is between an endocrine gland and a target organ, for example when the pancreas releases insulin which causes muscle and fat cells to take up glucose from the bloodstream. Hormones affect many physiological activities including growth, metabolism, appetite, puberty and fertility.
  • The Endocrine system. The complex interplay between the glands, hormones and other target organs is referred to as the endocrine system.
  • The Neuroendocrine System. The diffuse neuroendocrine system is made up of neuroendocrine cells scattered throughout the body.  These cells receive neuronal input and, as a consequence of this input, release hormones to the blood. In this way they bring about an integration between the nervous system and the endocrine system (i.e. Neuroendocrine).  A complex area but one example of what this means is the adrenal gland releasing adrenaline to the blood when the body prepares for the ‘fight or flight’ response in times of stress, ie, for vigorous and/or sudden action.

Hormones – The NET Effect

Hormones – the NET Effect

At least one or more hormones will be involved at various sites and even within certain syndromes, the dominant and offending hormone may differ between anatomical tumour sites. For example, NETs of the small intestine, lung or appendix (and one or two other places) may overproduce serotonin and other hormones which can cause a characteristic collection of symptoms currently called carcinoid syndrome.   The key symptoms are flushing, diarrhea and general abdominal pain, loss of appetite, fast heart rate and shortness of breath and wheezing. The main symptom for me was facial flushing and this was instrumental in my eventual diagnosis. The fact that I was syndromic at the point of diagnosis made it easier to discover, albeit the trigger for the investigation was a fairly innocuous event.  Other types of NETs are also affected by the overproduction of hormones including Insulinomas, Gastrinomas, Glucagonomas, VIPomas, Somatostatinomas, and others.  These can cause their own syndromes and are not part of carcinoid syndrome as some organisations incorrectly state. For more on NET syndromes – Read Here.

So are hormones horrible? 

Absolutely not, they are essential to the normal function of the human body.  For example if you didn’t have any of the hormone Serotonin in your system, you would become extremely ill.  On the other hand, if your glands start secreting too much of certain hormones, your body could become dysfunctional and in some scenarios, this situation could become life threatening.  So hormones are good as long as the balance is correct. NET patients with an oversecreting tumor may be classed as “functional”.

  • Functional tumors make extra amounts of hormones, such as gastrin, insulin, and glucagon, that cause signs and symptoms.
  • Nonfunctional tumors do not make extra amounts of hormones. Signs and symptoms are caused by the tumor as it spreads and grows. Many NET patients are deemed to be “non-functioning” with normal hormone levels. It’s also accurate to say that many can move from one stage to the other.

Location Location Location

It’s accurate to say that the type and amount of hormone secretion differs between locations or sites of the functional tumor and this can also create different effects.  The division of NETs into larger anatomical regions appears to differ depending on where you look but they all look something likes this:

Foregut NETs: In the respiratory tract, thymus, stomach, duodenum, and pancreas. This group mostly lack the enzyme aromatic amino decarboxylase that converts 5-HTP (5-Hydroxytryptophan – a precursor to serotonin) to serotonin (5-HT); such tumours tend to produce 5-HTP and histamine instead of serotonin.  The Pancreas is a particularly prominent endocrine organ and can produce a number of different syndromes each with their associated hormone oversecretion – although many can be non-functional (at least to begin with). Lung NETs rarely produce serotonin, but may instead secrete histamine causing an ‘atypical’ carcinoid syndrome with generalized flushing, diarrhea, periorbital oedema, lacrimation and asthma. They may also produce adrenocorticotropic hormone (ATCH) or corticotropin-releasing factor (CRP), resulting in an ectopic Cushing’s syndrome. Please note the respiratory tract and thymus are not really anatomically pure ‘Foregut’ – but in NETs, grouped there for convenience. 

Midgut NETs: In the small intestine, appendix, and ascending colon. For example, serotonin secreting tumors tend to be associated with carcinoid syndrome which tends to be associated with midgut NETs and this is normally the case. Many texts will also tell you that a syndrome only occurs at a metastatic stage.  Both are a good rule of thumb but both are technically incorrect. For example, ovarian NETs can have a form of carcinoid syndrome without liver metastasis (tends to be described as atypical carcinoid syndrome). It’s also possible to see serotonin secreting tumors in places such as the pancreas (although what you would call that type of NET is open for debate).

Hindgut NETs (transverse, descending colon and rectum) cannot convert tryptophan to serotonin and other metabolites and therefore rarely cause carcinoid syndrome even if they metastasise to the liver.

Less Common Locations – there are quite a few less common NET locations which may involve less common hormones – some are covered below including the key glands contributing to NETs.

Unknown Primary? –  One clue to finding the primary might be by isolating an offending hormone causing symptoms.

The key NET hormones

Serotonin

I used the example of Serotonin above because it is the most cited problem with NET Cancer although it does tend to be most prevalent in midgut tumors. Serotonin is a monoamine neurotransmitter synthesized from Tryptophan, one of the eight essential amino acids (defined as those that cannot be made in the body and therefore must be obtained from food or supplements). About 90% of serotonin produced in the body is found in the enterochromaffin cells of the gastrointestinal (GI) tract where it is used mainly to regulate intestinal movements amongst other functions. The remainder is synthesized in the central nervous system where it mainly regulates mood, appetite, and sleep. Please note there is no transfer of serotonin across the blood-brain barrier.

Alterations in tryptophan metabolism may account for many symptoms that accompany carcinoid syndrome. Serotonin in particular is the most likely cause of many features of carcinoid syndrome as it stimulates intestinal motility and secretion and inhibits intestinal absorption. Serotonin may also stimulate fibroblast growth and fibrogenesis and may thus account for peritoneal and valvular fibrosis encountered in such tumours; serotonin, however, it is said not to be associated with flushing. The diversion of tryptophan to serotonin may lead to tryptophan deficiency as it becomes unavailable for nicotinic acid synthesis, and is associated with reduced protein synthesis and hypoalbuminaemia; this may lead to the development of pellagra (skin rash, glossitis, stomatitis, confusion/dementia).

Serotonin is also thought to be responsible for ‘right sided’ heart disease (Carcinoid Heart Disease). It is thought that high levels of serotonin in the blood stream damages the heart, leading to lesions which cause fibrosis, particularly of the heart valves. This generally affects the right side of the heart when liver metastases are present. The left side of the heart is usually not affected because the lungs can break down serotonin. Right sided heart failure symptoms include swelling (edema) in the extremities and enlargement of the heart.

Whilst serotonin can be measured directly in the blood, it’s said to be more accurate to measure 5HIAA (the output of serotonin) via blood or urine, the latter is said to be the most accurate.

Tachykinins

Tackykinins include Substance P, Neurokinin A, Neuropeptide K and others. They are active in the enterochromaffin cells of the GI tract but can also be found in lung, appendiceal and ovarian NETs, and also in Medullary Thyroid Carcinoma and Pheochromocytomas. They are thought to be involved in flushing and diarrhea in midgut NETs. The most common tachykinin is Substance P, which is a potent vasodilator (substances which open up blood vessels). Telangiectasias are collections of tiny blood vessels which can develop superficially on the faces of people who have had NETs for several years. They are most commonly found on the nose or upper lip and are purplish in color. They are thought to be due to chronic vasodilatation.

Histamine

Histamine is a hormone that is chemically similar to the hormones serotonin, epinephrine, and norepinephrine. After being made, the hormone is stored in a number of cells (e.g., mast cells, basophils, enterochromaffin cells). Normally, there is a low level of histamine circulating in the body. However (and as we all know!), the release of histamine can be triggered by an event such as an insect bite. Histamine causes the inconvenient redness, swelling and itching associated with the bite. For those with severe allergies, the sudden and more generalized release of histamine can be fatal (e.g., anaphylactic shock). Mast cell histamine has an important role in the reaction of the immune system to the presence of a compound to which the body has developed an allergy. When released from mast cells in a reaction to a material to which the immune system is allergic, the hormone causes blood vessels to increase in diameter (e.g., vasodilation) and to become more permeable to the passage of fluid across the vessel wall. These effects are apparent as a runny nose, sneezing, and watery eyes. Other symptoms can include itching, burning and swelling in the skin, headaches, plugged sinuses, stomach cramps, and diarrhea. Histamine can also be released into the lungs, where it causes the air passages to become constricted rather than dilated. This response occurs in an attempt to keep the offending allergenic particles from being inhaled. Unfortunately, this also makes breathing difficult. An example of such an effect of histamine occurs in asthma. Histamine has also been shown to function as a neurotransmitter (a chemical that facilitates the transmission of impulses from one neural cell to an adjacent neural cell).

In cases of an extreme allergic reaction, adrenaline is administered to eliminate histamine from the body. For minor allergic reactions, symptoms can sometimes be lessened by the use of antihistamines that block the binding of histamine to a receptor molecule.  Histamine is thought to be involved with certain types and locations of NET, including Lung and foregut NETs where they can cause pulmonary obstruction, atypical flush and hormone syndromes.

Histamine, another amine produced by certain NETs (particularly foregut), may be associated with an atypical flushing and pruritus; increased histamine production may account for the increased frequency of duodenal ulcers observed in these tumours.

Kallikrein

Kallikrein is a potent vasodilator and may account for the flushing and increased intestinal mobility.

Prostaglandins

Although prostaglandins are overproduced in midgut tumours, their role in the development of the symptoms of carcinoid syndrome is not well established but triggering peristalsis is mentioned in some texts.

Bradykinin

Bradykinin acts as a blood vessel dilator. Dilation of blood vessels can lead to a rapid heartbeat (tachycardia) and a drop in blood pressure (hypotension). Dilation of blood vessels may also be partly responsible for the flushing associated with carcinoid syndrome.

Gastrin

Gastrin is a hormone that is produced by ‘G’ cells in the lining of the stomach and upper small intestine. During a meal, gastrin stimulates the stomach to release gastric acid. This allows the stomach to break down proteins swallowed as food and absorb certain vitamins. It also acts as a disinfectant and kills most of the bacteria that enter the stomach with food, minimising the risk of infection within the gut. Gastrin also stimulates growth of the stomach lining and increases the muscle contractions of the gut to aid digestion. Excess gastrin could indicate a NET known as a Gastric NET (stomach) or a pNET known as Gastrinoma (see pancreatic hormones below).

Endocrine Organs

Thyroid Gland

Calcitonin is a hormone that is produced in humans by the parafollicular cells (commonly known as C-cells) of the thyroid gland. Calcitonin is involved in helping to regulate levels of calcium and phosphate in the blood, opposing the action of parathyroid hormone. This means that it acts to reduce calcium levels in the blood. This hormone tends to involve Medullary Thyroid Carcinoma and Hyperparathyroidism in connection to those with Multiple Endocrine Neoplasia. Worth also pointing out the existence of Calcitonin Gene-Related Peptide (CGRP) which is a member of the calcitonin family of peptides and a potent vasodilator.  Please note that hypothyroidism is often a side effect of NETs or treatment for NETs – please click here to read about the connection.

Pituitary Gland

HPA AXIS – It’s important to note something called the HPA axis when discussing pituitary hormones as there is a natural and important connection and rhythm between the Hypothalamus, Pituitary and the Adrenal glands. However, I’m only covering the pituitary and adrenal due to their strong connection with NETs.

Adrenocorticotropic hormone (ATCH) is made in the corticotroph cells of the anterior pituitary gland. It’s production is stimulated by receiving corticotrophin releasing hormone (CRH) from the Hypothalamus. ATCH is secreted in several intermittent pulses during the day into the bloodstream and transported around the body. Like cortisol (see below), levels of ATCH are generally high in the morning when we wake up and fall throughout the day. This is called a diurnal rhythm. Once ACTH reaches the adrenal glands, it binds on to receptors causing the adrenal glands to secrete more cortisol, resulting in higher levels of cortisol in the blood. It also increases production of the chemical compounds that trigger an increase in other hormones such as adrenaline and noradrenaline. If too much is released, The effects of too much ATCH are mainly due to the increase in cortisol levels which result. Higher than normal levels of ATCH may be due to:

Cushing’s disease – this is the most common cause of increased ATCH. It is caused by a tumor in the pituitary gland (PitNET), which produces excess amounts of ATCH. (Please note, Cushing’s disease is just one of the numerous causes of Cushing’s syndrome). It is likely that a Cortisol test will also be ordered if Cushing’s is suspected.

A tumour outside the pituitary gland, producing ATCH is known as an ectopic ATCH. With NETs, this is normally a pNET, Lung/Bronchial/Pulmonary NET or Pheochromocytoma.

Adrenal Glands

Adrenaline and Noradrenline

These are two separate but related hormones and neurotransmitters, known as the ‘Catecholamines’. They are produced in the medulla of the adrenal glands and in some neurons of the central nervous system. They are released into the bloodstream and serve as chemical mediators, and also convey the nerve impulses to various organs. Adrenaline has many different actions depending on the type of cells it is acting upon.  However, the overall effect of adrenaline is to prepare the body for the ‘fight or flight’ response in times of stress, i.e. for vigorous and/or sudden action. Key actions of adrenaline include increasing the heart rate, increasing blood pressure, expanding the air passages of the lungs, enlarging the pupil in the eye, redistributing blood to the muscles and altering the body’s metabolism, so as to maximise blood glucose levels (primarily for the brain). A closely related hormone, noradrenaline, is released mainly from the nerve endings of the sympathetic nervous system (as well as in relatively small amounts from the adrenal medulla). There is a continuous low-level of activity of the sympathetic nervous system resulting in release of noradrenaline into the circulation, but adrenaline release is only increased at times of acute stress.  These hormones are normally related to adrenal and extra adrenal NETs such as Pheochromocytoma and Paraganglioma.  Like serotonin secreting tumours, adrenal secreting tumours convert the offending hormone into something which comes out in urine. In fact, this is measured (amongst other tests) by 24 hour urine test very similar to 5HIAA (with its own diet and drug restrictions).  It’s known as 24-hour urinary catacholamines and metanephrines.  Worth noting that adrenaline is also known as Epinephrine (one of the 5 E’s of Carcinoid Syndrome).

Cortisol

This is a steroid hormone, one of the glucocorticoids, made in the cortex of the adrenal glands and then released into the blood, which transports it all round the body. Almost every cell contains receptors for cortisol and so cortisol can have lots of different actions depending on which sort of cells it is acting upon. These effects include controlling the body’s blood sugar levels and thus regulating metabolism acting as an anti-inflammatory, influencing memory formation, controlling salt and water balance, influencing blood pressure. Blood levels of cortisol vary dramatically, but generally are high in the morning when we wake up, and then fall throughout the day. This is called a diurnal rhythm. In people who work at night, this pattern is reversed, so the timing of cortisol release is clearly linked to daily activity patterns. In addition, in response to stress, extra cortisol is released to help the body to respond appropriately. Too much cortisol over a prolonged period of time can lead to Cushing’s syndrome.  Cortisol oversecretion can be associated with Adrenal Cortical Carcinoma (ACC) which can sometimes be grouped within the NET family.

Other hormones related to ACC include:

Androgens (e.g. Testosterone) – increased facial and body hair, particularly females. Deepened voice in females.

Estrogen – early signs of puberty in children, enlarged breast tissue in males.

Aldosterone – weight gain, high blood pressure.

Adrenal Insufficiency (Addison’s Disease) occurs when the adrenal glands do not produce enough of the hormone cortisol and in some cases, the hormone aldosterone. For this reason, the disease is sometimes called chronic adrenal insufficiency, or hypocortisolism.

Parathyroid

Parathyroid hormone (PTH) is secreted from four parathyroid glands, which are small glands in the neck, located behind the thyroid gland. Parathyroid hormone regulates calcium levels in the blood, largely by increasing the levels when they are too low.  A primary problem in the parathyroid glands, producing too much parathyroid hormone causes raised calcium levels in the blood (hypercalcaemia – primary hyperparathyroidism). You may also be offered an additional test called Parathyroid Hormone-Related Peptide (PTHrP). They would probably also measure Serum Calcium in combination with these type of tests. The parathyroid is one of the ‘3 p’ locations often connected to Multiple Endocrine Neoplasia – MEN 1

Pancreatic Hormones (Syndromes)

Pancreatic neuroendocrine tumors form in hormone-making cells of the pancreas. You may see these described as ‘Islet Cells’ or ‘Islets of Langerhans’ after the scientist who discovered them. Pancreatic NETs may also be functional or non-functional:

  • Functional tumors make extra amounts of hormones, such as gastrin, insulin, and glucagon, that cause signs and symptoms.
  • Nonfunctional tumors do not make extra amounts of hormones. Signs and symptoms are caused by the tumor as it spreads and grows.

There are different kinds of functional pancreatic NETs. Pancreatic NETs make different kinds of hormones such as gastrin, insulin, and glucagon. Functional pancreatic NETs include the following:

  • Gastrinoma: A tumor that forms in cells that make gastrin. Gastrin is a hormone that causes the stomach to release an acid that helps digest food. Both gastrin and stomach acid are increased by gastrinomas. When increased stomach acid, stomach ulcers, and diarrhea are caused by a tumor that makes gastrin, it is called Zollinger-Ellison syndrome. A gastrinoma usually forms in the head of the pancreas and sometimes forms in the small intestine. Most gastrinomas are malignant (cancer).
  • Insulinoma: A tumor that forms in cells that make insulin. Insulin is a hormone that controls the amount of glucose (sugar) in the blood. It moves glucose into the cells, where it can be used by the body for energy. Insulinomas are usually slow-growing tumors that rarely spread. An insulinoma forms in the head, body, or tail of the pancreas. Insulinomas are usually benign (not cancer).
  • Glucagonoma: A tumor that forms in cells that make glucagon. Glucagon is a hormone that increases the amount of glucose in the blood. It causes the liver to break down glycogen. Too much glucagon causes hyperglycemia (high blood sugar). A glucagonoma usually forms in the tail of the pancreas. Most glucagonomas are malignant (cancer).
  • Pancreatic Polypeptide (PPoma). A pancreatic polypeptide is a polypeptide hormone secreted by the pancreatic polypeptide (PP) cells of the islets of Langerhans in the endocrine portion of the pancreas. Its release is triggered in humans by protein-rich meals, fasting, exercise, and acute hypoglycemia and is inhibited by somatostatin and intravenous glucose. The exact biological role of pancreatic polypeptide remains uncertain. Excess PP could indicate a pNET known as PPoma.
  • Other types of tumors: There are other rare types of functional pancreatic NETs that make hormones, including hormones that control the balance of sugar, salt, and water in the body. These tumors include:
  • VIPomas, which make vasoactive intestinal peptide. VIPoma may also be called Verner-Morrison syndrome, pancreatic cholera syndrome, or the WDHA syndrome (Watery Diarrhea, Hypokalemia (low potassium)and Achlorhydria).
  • Somatostatinomas, which make somatostatin. Somatostatin is a hormone produced by many tissues in the body, principally in the nervous and digestive systems. It regulates a wide variety of physiological functions and inhibits the secretion of other hormones, the activity of the gastrointestinal tract and the rapid reproduction of normal and tumour cells. Somatostatin may also act as a neurotransmitter in the nervous system.

The pancreas is one of the ‘3 p’ locations often connected to Multiple Endocrine Neoplasia – MEN 1

Having certain syndromes can increase the risk of pancreatic NETs.

Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Multiple endocrine neoplasia type 1 (MEN1) syndrome is a risk factor for pancreatic NETs.

Signs and symptoms of pancreatic NETs

Signs or symptoms can be caused by the growth of the tumor and/or by hormones the tumor makes or by other conditions. Some tumors may not cause signs or symptoms. Check with your doctor if you have any of these problems.

Signs and symptoms of a non-functional pancreatic NET

A non-functional pancreatic NET may grow for a long time without causing signs or symptoms. It may grow large or spread to other parts of the body before it causes signs or symptoms, such as:

  • Diarrhea.
  • Indigestion.
  • A lump in the abdomen.
  • Pain in the abdomen or back.
  • Yellowing of the skin and whites of the eyes.

Signs and symptoms of a functional pancreatic NET

The signs and symptoms of a functional pancreatic NET depend on the type of hormone being made.

Too much gastrin may cause:

  • Stomach ulcers that keep coming back.
  • Pain in the abdomen, which may spread to the back. The pain may come and go and it may go away after taking an antacid.
  • The flow of stomach contents back into the esophagus (gastroesophageal reflux).
  • Diarrhea.

Too much insulin may cause:

  • Low blood sugar. This can cause blurred vision, headache, and feeling lightheaded, tired, weak, shaky, nervous, irritable, sweaty, confused, or hungry.
  • Fast heartbeat.

Too much glucagon may cause:

  • Skin rash on the face, stomach, or legs.
  • High blood sugar. This can cause headaches, frequent urination, dry skin and mouth, or feeling hungry, thirsty, tired, or weak.
  • Blood clots. Blood clots in the lung can cause shortness of breath, cough, or pain in the chest. Blood clots in the arm or leg can cause pain, swelling, warmth, or redness of the arm or leg.
  • Diarrhea.
  • Weight loss for no known reason.
  • Sore tongue or sores at the corners of the mouth.

Too much vasoactive intestinal peptide (VIP) may cause:

  • Very large amounts of watery diarrhea.
  • Dehydration. This can cause feeling thirsty, making less urine, dry skin and mouth, headaches, dizziness, or feeling tired.
  • Low potassium level in the blood. This can cause muscle weakness, aching, or cramps, numbness and tingling, frequent urination, fast heartbeat, and feeling confused or thirsty.
  • Cramps or pain in the abdomen.
  • Facial flushing.
  • Weight loss for no known reason.

Too much somatostatin may cause:

  • High blood sugar. This can cause headaches, frequent urination, dry skin and mouth, or feeling hungry, thirsty, tired, or weak.
  • Diarrhea.
  • Steatorrhea (very foul-smelling stool that floats).
  • Gallstones.
  • Yellowing of the skin and whites of the eyes.
  • Weight loss for no known reason.

Too much pancreatic polypeptide may cause:

  • belly pain.
  • an enlarged liver.

Testing hormones

Clearly the presenting symptoms will give doctors a clue to the oversecreting hormone (see list above). Excessive secretions or high levels of hormones and other substances can be measured in a number of ways. For example:

Well known tests for the most common types of NET include 5-Hydroxyindoleacetic Acid (5-HIAA) 24 hour urine test which is also measured by a blood draw. Note: -tumor markers can be measured simultaneously e.g. Chromogranin A (CgA) blood test and/or Pancreastatin as there can very often be a correlation between tumour mass and tumour secreting activity. CgA / Pancreastatin is a blood test which measures a protein found in many NET tumour cells. These marker tests are normally associated with tumour mass rather than tumour functionality.

By measuring the level of 5-HIAA in the urine or blood, healthcare providers can calculate the amount of serotonin in the body (5-HIAA is a by-product of serotonin).  5-HIAA test is the most common biochemical test for carcinoid syndrome or the degree of how ‘functional’ tumours are.  If you’ve understood the text above, you can now see why there are dietary and drug restrictions in place prior to the test.

Pancreatic Hormone testing. There are other tests for other hormones and there is a common test which measured the main hormones seen in NETs. It may be called different things in different countries, but in UK, it’s known as a ‘Fasting Gut Hormone Profile‘.

Scratching the surface here so for a comprehensive list of marker tests for NETs, have a read here.

Treatment for Over-secreting Hormones

Of course, reducing tumour bulk through surgery and other treatment modalities, should technically reduce over-secretion (I suspect that doesn’t work for all).  Other treatments may have the dual effect of reducing tumour burden and the effects of hormone oversecretions.

One of the key treatment breakthroughs for many NET cancer patients, is the use of ‘Somatostatin Analogues’ mainly branded as Octreotide (Sandostatin) or Lanreotide (Somatuline). People tend to associate these drugs with serotonin related secretions and tumours but they are in actual fact useful for many others including the pancreatic NETs listed above.  Patients will normally be prescribed these drugs if they are displaying these symptoms but some people may be more avid to the drug than others and this may influence future use and dosages. This is another complex area but I’ll try to describe the importance here in basic terms. Somatostatin is a naturally occurring protein in the human body. It is an inhibitor of various hormones secreted from the endocrine system (some of which were listed above) and it binds with high affinity to the five somatostatin receptors found on secretory endocrine cells. NETs have membranes covered with receptors for somatostatin. However, the naturally occurring Somatostatin has limited clinical use due to its short half-life (<3 min). Therefore, specific somatostatin analogues (synthetic versions) have been developed that bind to tumours and block hormone release. Thus why Octreotide and Lanreotide do a good job of slowing down hormone production, including many of the gut hormones controlling emptying of the stomach and bowel.  It also slows down the release of hormones made by the pancreas, including insulin and digestive enzymes – so there can be side effects including fat malabsorption.

The recent introduction of Telotristat Ethyl (XERMELO) is interesting as that inhibits a precursor to serotonin and reduces diarrhea in those patients where it is not adequately controlled by somatostatin analogues.

Other than the effects of curative or cytoreductive surgery, some NETs may have very specialist drugs for inhibiting the less common hormone types.  This is not an exhaustive list.

Worth also noting that oversecreting hormones can contribute to a phenomenon known as Carcinoid Crisis – read more here.  For catacholamine secreting tumors (Pheochromocytoma/Paraganglioma), this may be known as Intraoperative Hypertensive Crisis

Sorry about the long article – it’s complex and you should always consult your specialist about issues involving hormones, testing for hormones and treating any low or high scores.

Thanks for reading

Ronny

I’m also active on Facebook.  Like my page for even more news.  I’m also building up this site here: Ronny Allan

Disclaimer

My Diagnosis and Treatment History

Most Popular Posts

Sign up for my twitter newsletter

Remember ….. in the war on Neuroendocrine Cancer, let’s not forget to win the battle for better quality of life!

wego-blog-2018-winner

patients included
This is a Patients Included site