Neuroendocrine Cancer: Ga68 PET Scan – a game changer?

When I was offered my very first Ga68 PET/CT at a 6 monthly surveillance meeting in May 2018, I was both excited and apprehensive. Let me explain below why I had a mix of emotions.

I was diagnosed in 2010 with metastatic NETs clearly showing on CT scan, the staging was confirmed via an Octreotide Scan which in addition pointed out two further deposits above the diaphragm (one of which has since been dealt with). In addition to routine surveillance via CT scan, I had two further Octreotide Scans in 2011 and 2013 following 3 surgeries, these confirmed the surveillance CT findings of remnant disease. The third scan in 2013 highlighted an additional lesion in my thyroid (still under a watch and wait regime, biopsy inconclusive but read on….).

To date, my 6 monthly CT scans seem to have been adequate surveillance cover and all my tumour and hormone markers remain normal. I’m reasonably fit and well for a 62-year-old.

Then I ventured into the unknown

this is not actually my scan!

I wrote a comprehensive post about the Ga68 PET entitled “…. Into the unknown” – so named because that is how I felt at the time. It’s well-known that the Ga68 is a far superior nuclear scan to the elderly Octreotide type, showing much greater detail with the advantage of providing better predictions of PRRT success if required downstream. It has been a game changer for many and if you look below and inside my article, you will see statistics indicating just how it can ‘change the game’ in somatostatin receptor positive Neuroendocrine Cancer diagnostics and treatment.

The excitement of the Ga68 PET

I was going to get the latest ‘tech’ and thought it could be useful confirmation of what I already knew. I also felt lucky to get one, they are limited in UK and there has to be a clinical need to get access. I was excited because it might just rubber stamp the stability I’ve enjoyed for the past 5 or so years since my last surgery in 2012.

The apprehension of the Ga68 PET

I also felt apprehensive because of the ‘unknown’ factor with cancer, i.e. what is there lurking in my body that no-one knows about, and which might never harm me but this scan will light it up demanding attention. I was also apprehensive in case this more detailed scan found something potentially dangerous. As we know, NETs are mostly slow-growing but always sneaky. Of course, any new tumours found may not actually be new, they were just not seen until the Ga68 PET was able to uncover them.  How annoying!

Is the Ga68 PET Scan a game changer?

To confirm the advantages of SSTR PET over Octreotide scans, a study comprising 1,561 patients reported a change in tumour management occurred in over a third of patients after SSTR PET/CT even when performed after an Octreotide scan.

  • Overall, change in management occurred in 44% (range, 16%-71%) of NET patients after SSTR PET/CT.
  • In 4 of 14 studies, SSTR PET/CT was performed after an 111In-Octreotide scan. In this subgroup, additional information by SSTR PET/CT led to a change in management in 39% (range, 16%-71%) of patients.
  • Seven of 14 studies differentiated between inter- and intramodality changes, with most changes being intermodality (77%); intramodality, (23%). (note: intermodality means changes within the same treatment, intramodality means change to another treatment).

In an older study, this slide from a NET Research Foundation conference shows some more interesting statistics:

wp-image-991783422jpg
This slide from a recent NET Research Foundation conference confirms the power of more detailed scanning

Was Ga68 PET a game changer for me?

Yes, I believe so.  I’m now in the ‘bone met club’ and although that single metastasis has probably been there for some time, it’s not a ‘label‘ I was keen to add to my portfolio. If I was to be 100% honest, I’m not totally convinced it’s a metastasis. The scan has brought more light onto my thyroid issue.  In fact it indicates even more potential issues above the diaphragm including what looks like a new sighting around my left pectoral lymph nodes.  The scan also lghts up a known issue in the left clavicle lymph nodes, first pointed out via Octreotide scan in 2010 and biopsy negative.

In addition to a nuclear scan update (routine surveillance), it also formed part of an investigation into progression of my retroperitoneal fibrosis (initially diagnosed 2010 but potential growth spotted on recent surveillance CT).  The Ga68 PET doesn’t make fibrosis light up (it’s not cancerous) but there are some hotspots in the area of the aorta close to the fibrosis, a potential source of the cause.  Surgery is on hold for now as my kidney function is fine following a renal MAG3 scan which reported no blockages. 

It would appear I’m no longer a boring stable patient

The Ga68 PET Scan confirmed:

Bone Metastases. Report indicates “intense focal uptake“. It always amazes me that people can be thankful for having an extra tumour.  I’m thankful I only have a single bone metastasis (right rib number 11). I had read so many stories of those who got their first Ga68 PET and came back with multiple bone metastases. I’ll accept one and add to my NET CV. I have no symptoms of this bone metastasis and it will now be monitored going forward. I’m annoyed I don’t know how long it’s been there though!

Confirmation and better understanding of the following:

  1. Thyroid lesion There is some uptake showing. A 2014 Biopsy of this lesion was inconclusive and actual 2018 Ga68 PET report infers physiological uptake. I’m already diagnosed hypothyroidism, possibly connected.  (Edit – on ultrasound in Jan 2019, looks slightly smaller than previous check).
  2. Left Supraclavicular Fossa (SCF) Nodes lighting up “intense uptake“.  I’ve had an exploratory biopsy of the SCF nodes, 5 nodes removed negative. Nothing is ‘pathologically enlarged’ in this area. Monitored every 6 months on CT, annually on ultrasound.  I had 9 nodes removed from the left axillary in 2012, 5 tested positive for NETs and this area did not light up. This whole area on the left above the diaphragm continues to be controversial. My surgeon once said I had an unusual disposition of tumours.  (Edit: Nothing sinister or worryingly enlarged showing on Jan 2019 ultrasound – measuring 6mm).
  3. Report also highlights left subpectoral lymph nodes which is new.  The subpectoral area is very interesting as from my quick research, they are closer to the left axillary (armpit) nodes than they are to the SCF nodes. I’m hoping to get an ultrasound of these in January at my annual thyroid clinic (Edit: nothing sinister showing on ultrasound in Jan 2019).
  4. My known liver metastases lit up (remnant from liver surgery 2011) – not marked as intense though. The figure of 3 seems to figure highly throughout my surveillance scans although the PET report said “multiple” and predominately right-sided which fits.
  5. Retroperitoneal area. This has been a problem area for me since diagnosis and some lymph nodes are identified (intense word not used). This area has been highlighted on my 3 octreotide scans to date and was first highlighted in my diagnosis trigger scan due to fibrosis (desmoplasia) which was surrounding the aorta and inferior venous cava, some pretty important blood vessels. I wrote an article on the issue very recently – you can read by clicking here. So this scan confirms there are potentially active lymph nodes in this area, perhaps contributing to further growth of the fibrosis threatening important vessels – read below.

Retroperitoneal Fibrosis (Desmoplasia)

I have learned so much about desmoplasia since this issue arose that I now fully understand why I had to have radical surgery back in 2010 to try to remove as much of the fibrosis as possible from the aortic area. You can read more about this in my article.  Desmoplasia via fibrosis is still very much of an unknown and mystery condition in NETs.

I now know that my fibrosis is classed as clinically significant and according to the Uppsala study of over 800 patients inside my article, I’m in 5% of those affected in this way (2% if you calculate it using just the retroperitoneal area).

It appears this problem has come back with new fibrosis or growth of existing fibrosis threatening to impinge on blood vessels related to the kidneys and also my ureters (kidney to bladder urine flow). The Ga68 PET doesn’t make fibrosis light up (it’s not cancerous) but there are some hotspots in the area of the aorta close to the fibrosis.

I didn’t expect this particular problem to return – it was a bit of a shock. My hormone markers have been normal since 2011 and this just emphasises the importance of scans in surveillance. 

Conventional Imaging is still important though

There’s still quite a lot of hype surrounding the Ga68 PET scan and I get this.  However, it does not replace conventional imaging (CI) such as CT and MRI scans which still have their place in routine surveillance and also in diagnostics where they are normally at least the trigger for ‘something is wrong’. For the vast majority, a CT/MRI scan will find tumours and be able to measure reductions and progress in regular surveillance regimes. In fact, the retroperitoneal fibrosis has appeared on every CT scan since diagnosis but the changes were highlighted on my most recent standalone CT and it triggered the Ga68 PET (although my new Oncologist did say I was due a revised nuclear scan).  It’s not a ‘functional’ issue (although it is caused by functional tumours). In fact the fibrosis is not mentioned on the Ga68 PET because it is not lighting up – but the lymph nodes surrounding it are mentioned and they are under suspicion of being active.

Appropriate Use Criteria for Somatostatin Receptor PET Imaging in Neuroendocrine Tumors

There are actually recommended usages for the Ga68 PET scan here.  For example, it is not recommended for routine surveillance in place of CI.

Scans – ‘horses for courses’

Read a summary of all conventional scans and nuclear scans by clicking here.

Next Steps

I had a meeting with my Oncologist and Surgeon and a surgical plan is possible in the event of a problem. My surgeon explained it all in his wonderfully articulate and brilliant surgical mind. Fortunately it’s not really urgent but pre-emptive treatment may be required at some point as the consequences of kidney/bladder function malfunction are quite severe. Following some further checks, the anticipated surgery is on hold for now as my kidney function is fine following a renal MAG3 scan which reported no blockages.  I continue to have monthly renal blood tests and it was hinted another renal MAG3 could be done at the end of the year.

Summary

My game has changed, that’s for sure. I’m now entering a new phase and I’m waiting on details of my revised surveillance regime. However, at least my medical team and I now know what WE are dealing with and the risks vs benefits are currently being assessed. I’m heavily involved in that.

If you can see it, you can detect it. If you can detect it, you can monitor or treat it.

 

Update – Oncolytic Virus Trials for Neuroendocrine Cancer

I’ve posted extensively about Oncolytic virus trials, focused on the ongoing Neuroendocrine Cancer trial in Uppsala Sweden. I wanted to incorporate this information into a single article ready for future news, whilst at the same time updating you on further developments in the field of Oncolytic Viruses for Neuroendocrine Cancer.  The excitement of the Uppsala work has dampened in recent years, not helped by the fact that one of the first patients unfortunately died. In the absence of any news, I suspect there has been no real progress and/or the funding has run out.

What exactly are Oncolytic Viruses?

Oncolytic Viruses infects and breaks down cancer cells but not normal cells. Oncolytic viruses can occur naturally or can be made in the laboratory by changing other viruses. Certain oncolytic viruses are being studied in the treatment of cancer. Some scientists say they are another type of immunotherapy whilst others say it’s too early to classify as such. The good news is that Neuroendocrine Cancer seems to figure in this work with two of these viruses apparently working on mice to date. Listed below are two active projects involving NETs, one directly and one indirectly.

The Uppsala Trial – AdVince

15871660_793548617450098_750736690369970047_n
The Oncolytic Virus AdVince is removed from the freezer ready for the Neuroendocrine Cancer Trial

 

Read here for an update released 7th June 2019.

I’ll briefly describe what’s happening and then you can link to my Facebook article if you need more background.

The trial is called AdVince after Vince Hamilton who funded it. Unfortunately he died before he saw any output but his forward thinking and benevolence lives on and might hopefully help NET patients in the longer term. It’s quite a small trial and is being conducted in Uppsala University Sweden, a famous European NET Centre of Excellence and where many people from across the world attend to take advantage of PRRT availability and experience and is home to famous NET specialist Kjell Öberg, MD, PhD, a professor of endocrine oncology.

A Swedish man (Jan-Erik Jannsson) was the first to get the virus to their cancer (NETs) using a genetically modified virus.

Unfortunately, I was given the news from a source close to the trial that Jan died last year of pneumonia.  I have no evidence to suggest his death is in anyway connected to the trial but I’m told he was an ill man prior to the trial commencing.  I have therefore dedicated this post to him.  RIP Jan.

Jan

The initial data presented by the trial indicated that AdVince can be safely evaluated in a phase I/IIa clinical trial for patients with liver-dominant NET.  The last I heard from the trial is that they are trying to recruit a further 12 patients to Phase IIa (the trial document allows for up to 36). 

Read more background on my Facebook post here: Click here

The trial document on Clinical Trials Website: Click here

Then read this status update from the trial sponsors released in March 2018

Pexa-Vec Oncolytic Virus Trials

This is an oncolytic viral therapy currently in phase III and phase Ib/II clinical trials for use against primary liver (Hepatocellular Carcinoma) and Colorectal cancers, respectively. Pexa-Vec is a weakened (or attenuated) virus that is based on a vaccine used in the eradication of smallpox. The modified virus is injected directly into the cancer tumour, to grow inside these rapidly growing cancer cells and hopefully kill them.

According to the Colorectal Clinical Trial, the aim of the study is to evaluate whether the anti-tumor immunity induced by Pexa-Vec oncolytic viral therapy can be enhanced by immune checkpoint inhibition i.e. they are testing it in conjunction with Immunotherapy drugs (in the case of Colorectal, Durvalumab, and a combination of Durvalumab and Tremelimumab).

The Hepatocellular Carcinoma trial (Phocus) is at Phase III where the sponsors are evaluating Pexa-Vec to determine if it can slow the progression of advanced liver cancer and improve quality of life. I can other trials appearing such as this one for Colorectal Cancer and this one for any solid tumour type.

The work is a collaboration forged between University of California San Francisco (UCSF) vascular researcher Donald McDonald, MD, PhD, and researchers at San Francisco-based biotech SillaJen Biotherapeutics Inc. (formerly Jennerex Biotherapeutics, Inc.), a subsidiary of SillaJen, Inc., headquartered in Korea.

Check out this page:  click here

A tumor with green patches of vaccinia virus infection surrounded by red blood vessels. Image by Donald McDonald Lab

So what’s the Neuroendocrine Connection with Pexa-Vec?

As part of the research, McDonald’s lab injected it intravenously into mice genetically modified to develop pancreatic neuroendocrine cancer. They found that the virus failed to infect healthy organs or make the animals ill, but succeeded in infecting blood vessels within tumors. These initial infections caused the vessels to leak and expose the tumor cells to the virus. In these experiments, the virus managed to infect and destroy only a small proportion of tumor cells directly, the researchers found, but within five days of the initial infection, the rest of the tumor began to be killed by a powerful immune reaction.  Live human trials have commenced in 2018 and the “patient 1” is a pancreatic NET patient.  Read more here.   Interestingly they added Keytruda (an immunotherapy) to the mix.  It’s only been four months since ‘Patient 1’ (Tamara) began the trial, but a mid-treatment CT scan was said to be “promising”.  I will keep this article live and bring you updates as I receive them.

Summary

Clearly it’s still early days in the Oncolytic Virus field with minimum breakthrough in terms of success on humans. In terms of the Neuroendocrine connection, it is exciting that two programmes are showing results (albeit in mice). We wait to hear from Uppsala on how the human test of AdVince is coming along. My agents are scanning the internet every day looking for any comment.

If you want to learn more about Oncolytic Viruses in general – there’s a great summary here.

Thanks for reading

Ronny

I’m also active on Facebook.  Like my page for even more news.  I’m also building up this site here: Ronny Allan

Disclaimer

My Diagnosis and Treatment History

Most Popular Posts

Sign up for my twitter newsletter

Remember ….. in the war on Neuroendocrine Cancer, let’s not forget to win the battle for better quality of life!

patients included
This is a Patients Included Site

PLEASE CONSIDER SHARING THIS POST – YOU MAY SAVE SOMEONE’S LIFE

 

Neuroendocrine Neoplasms – Can they be cured?

Neuroendocrine Neoplasms can they be cured

OPINION:

“Cured” – In cancer, this word can evoke a number of emotions. Interestingly, not all these emotions will be as positive as you might think. If you want to spark a heated debate on a Neuroendocrine Cancer patient forum, just mention that you’ve been cured. I’m not taking any sides by using this statement, just stating what actually happens and the deeply held views that persist in community held groups.  One important factor in some of this thinking is that many people still remember the days where most diagnoses were late and many followed years of misdiagnoses for other conditions.  But the latest statistics (which are now quite old) indicate things are changing. The massive increase in incidence rates indicates earlier diagnoses and it’s true for many cancers, including Neuroendocrine, that this vastly increases the chances of a cure.

I’ve been living with Neuroendocrine Cancer since 2010 (I guess I had it some yeas before), so I must be cured, right? Unfortunately not as straightforward as this, and I’m guessing this is also the case for many cancers. Doctors are faced with word challenges daily because patients understandingly cling to certain words for which they interpret perhaps different than a doctor.  Doctors, therefore, need to be careful when saying the word “cured‘ even if there is a small likelihood that a cancer will recur. Even the word ‘curative’ in relation to a therapy needs to be carefully contextualised.  There’s plenty of ‘conservative’ and ‘safer’ alternative terms that can be used, such as ‘stable’, ‘no evidence of disease (NED)’, ‘in remission’ or ‘complete response’.  However, to be truthful, I don’t see the latter two much in Neuroendocrine disease anecdotally.

So with all these ‘ifs’ and ‘buts’, what exactly is a cure?

Answering this question isn’t a simple case of ‘yes’ or ‘no’, because it depends on the way that the term ‘cancer’ is defined. It should actually be viewed as an umbrella term for a collection of hundreds of different diseases. They all share the fundamental characteristic of rogue cells growing out of control, but each type of cancer, and each person’s individual cancer, is unique and comes with its own set of challenges. That doesn’t mean individual cases of cancer can’t be cured. Many cancers in fact already can be.

Cancer is seen today less as a disease of specific organs, and more as one of molecular mechanisms caused by the mutation of specific genes. The implication of this shift in thinking is that the best treatment for, say, colorectal cancer may turn out to be designed and approved for use against tumors in an entirely different part of the body, such as the breast. We’re certainly seeing that with certain targeted therapies and more recently with Immunotherapy.

Given the above, it’s very unlikely that there will be one single cure that can wipe out all cancers, well at least not right now.  Scientists aren’t actually on the hunt for a ‘silver bullet’ against all cancers, Quite the opposite. The more scientists get to know each type of cancer inside and out, the greater the chance of finding new ways to tackle these diseases so that more people can survive. Thanks to a much deeper understanding of cell biology and genetics, there exist today a growing number of targeted therapies that have been designed at a molecular level to recognise particular features specific of cancer cells. Along with chemotherapy, surgery and radiotherapy, these treatments—used singly and in combination—have led to a slow, but steady, increase in survival rates. You can definitely count Neuroendocrine Cancer in that category.

Surely a cure is more possible if cancer is diagnosed earlier?

To a certain extent this is true for many types of cancer, including Neuroendocrine Neoplasms (I refer you to my statement on incidence rates increase above).  In fact the  scientists I quoted below did say ….”We detect those attacks when they’re still early, before the cancers have widely spread, at a time when they can still be cured simply by surgery or perhaps surgery and adjuvant therapy, which always works better on smaller tumors.”.  

What about Neuroendocrine Neoplasms (NENs)?  Clearly I’m not qualified to make such statements except to say that I am of the opinion that earlier diagnosis is better for any curative scenario.  When you read NEN guidelines (ENETS/NANETS etc), the word ‘cure’ and ‘curative’ is frequently mentioned in relation to surgery.  Bearing in mind that our most expert specialists are involved in the drafting of these guidelines, perhaps we should pause and think before dismissing these claims.  Having checked ENETS publications, I can see it’s related to certain conditions and factors such as localisation within the organ, tumour size, good resection margins, and a suitable follow-up surveillance.

Clearly with advanced disease, the cancer becomes incurable but treatment for many being palliative to reduce tumor bulk and reduce any symptoms and/or syndrome effects. Despite this, the outlook for metastatic NENs at the lower grades is good. While we’re talking about palliative care, do not confuse this with end of life, that is only one end of the palliative spectrum.  It can and is used at the earliest stage of cancer.

Immunotherapy will eventually cure cancer, right?

Immunotherapy is forecast to play a huge part in cancer treatment in the future, that we know. But to suggest that it’s a cure is probably overstating its current performance.  Neuroendocrine Cancer has not been forgotten – you can read more about Neuroendocrine Cancer and Immunotherapy here.

I heard the Oncolytic Virus at Uppsala is a cure for NETs?

There is currently no scientific evidence that the Oncolytic Virus (AdVince) for any other oncolytic virus initiatives can cure humans with NENs.  So far it has only been proven in destroying NETs in mice. The Oncolytic Viruses developed in Uppsala are now being evaluated in phase I clinical trials for neuroendocrine cancer.  If you’re not up to speed with Oncolytic Virus trials, read more here – Oncolytic Virus

Isn’t prevention better than a cure?

This old adage is still relevant BUT latest thinking would indicate it is not applicable to all cancers.  Scientists claim that 66% of cancer is  simply a form of ‘bad luck’ and if the claim is accurate, it follows that many cancers are simply inevitable. The thinking suggests that random errors occurring during DNA replication in normal stem cells are a major contributing factor in cancer development confirming that “bad luck” explains a far greater number of cancers than do hereditary and environmental factors. This scientific thinking is a tad controversial so it’s worth remembering that even if, as this study suggests, most individual cancer mutations are due to random chance, the researchers also admit that the cancers they cause may still be preventable. It’s complex!

The newspapers are always talking about breakthroughs and cures for cancer?

Newspapers looking for a good headline will use words such as ‘cure’. Sadly, headlines are generally written by sub-editors who scan the article and look to find a ‘reader-oriented angle’ for the heading. They either can’t or don’t have time to understand what’s actually being said. Unfortunately this then leads to people sharing what is now a misleading article without a thought for the impact on those who are worried about the fact they have cancer and whether it can be cured or not.

Alternative Therapy cures cancer, right? There’s also a lot of fake health news out there – check out my article series about the problems with the internet and ‘Miracle Cures’.

To cure, they must know the cause?  

To a certain extent, that’s very accurate and the above paragraphs suggest how scientists look for causes.  Have you ever wondered what caused your NET?  I did ponder this question in an article here.  The only known cause of NETs is currently the proportion of patients with heredity syndromes – see my article of Genetics and Neuroendocrine Cancer.  Interestingly, the NET Research Foundation recently awarded funding to look at the causes of Small Intestine (SI) NETs (one of the most common types).  A scientific collaboration between UCL, Dana-Farber Cancer Institute, UCSF Medical Centre and the UCL Cancer Institute / Royal Free Hospital London. The team’s approach has the potential to identify inherited, somatic (non-inherited) genetic, epigenetic and infectious causes of SI-NETs.  The research is questioning whether SI-NETs are caused by DNA changes in later life or by aberrant genes inherited at birth; environmental influences or infectious agents – or is it a combination of all these factors?  Very exciting. Read more here.

What would a cure mean to those living with NENs?

This is something that has crossed my mind, even though I don’t believe it will happen in my lifetime.  I guess it would be good to get rid of the known remnant tumors left behind from my treatment (and any micrometastases currently not detectable).  However, many NEN patients are living with the consequences of cancer and its treatment, including surgery, chemotherapy, biological therapy, somatostatin analogues, radionuclide therapy, liver directed therapy, and others.  Many of these effects would remain – let’s face it, a cure is not going to give me back bits of my small and large intestine, liver and an army of lymph nodes. So support for those living with NENs would need to remain despite a cure.

Summary

The emotional aspect of the word ‘cured’ seems to be an issue across many cancers and it’s certainly very controversial in NEN circles.  The world has still not cured the many cancers that exist. But over the next five to ten years the era of personalised medicine could see enormous progress in making cancer survivable.  I think both doctors and patients need to take a pragmatic view on the ‘cured’ word and to end this article I wanted to share an interesting quote I found whilst researching. A controversial statement but I found it a pragmatic way to think about living with advanced and incurable (but treatable) Neuroendocrine Neoplasms

cure quote