Neuroendocrine Cancer: Ga68 PET Scan – a game changer?

When I was offered my very first Ga68 PET/CT at a 6 monthly surveillance meeting in May 2018, I was both excited and apprehensive. Let me explain below why I had a mix of emotions.

I was diagnosed in 2010 with metastatic NETs clearly showing on CT scan, the staging was confirmed via an Octreotide Scan which in addition pointed out two further deposits above the diaphragm (one of which has since been dealt with). In addition to routine surveillance via CT scan, I had two further Octreotide Scans in 2011 and 2013 following 3 surgeries, these confirmed the surveillance CT findings of remnant disease. The third scan in 2013 highlighted an additional lesion in my thyroid (still under a watch and wait regime, biopsy inconclusive but read on….).

To date, my 6 monthly CT scans seem to have been adequate surveillance cover and all my tumour and hormone markers remain normal. I’m reasonably fit and well for a 62-year-old.

Then I ventured into the unknown

this is not actually my scan!

I wrote a comprehensive post about the Ga68 PET entitled “…. Into the unknown” – so named because that is how I felt at the time. It’s well-known that the Ga68 is a far superior nuclear scan to the elderly Octreotide type, showing much greater detail with the advantage of providing better predictions of PRRT success if required downstream. It has been a game changer for many and if you look below and inside my article, you will see statistics indicating just how it can ‘change the game’ in somatostatin receptor positive Neuroendocrine Cancer diagnostics and treatment.

The excitement of the Ga68 PET

I was going to get the latest ‘tech’ and thought it could be useful confirmation of what I already knew. I also felt lucky to get one, they are limited in UK and there has to be a clinical need to get access. I was excited because it might just rubber stamp the stability I’ve enjoyed for the past 5 or so years since my last surgery in 2012.

The apprehension of the Ga68 PET

I also felt apprehensive because of the ‘unknown’ factor with cancer, i.e. what is there lurking in my body that no-one knows about, and which might never harm me but this scan will light it up demanding attention. I was also apprehensive in case this more detailed scan found something potentially dangerous. As we know, NETs are mostly slow-growing but always sneaky. Of course, any new tumours found may not actually be new, they were just not seen until the Ga68 PET was able to uncover them.  How annoying!

Is the Ga68 PET Scan a game changer?

To confirm the advantages of SSTR PET over Octreotide scans, a study comprising 1,561 patients reported a change in tumour management occurred in over a third of patients after SSTR PET/CT even when performed after an Octreotide scan.

  • Overall, change in management occurred in 44% (range, 16%-71%) of NET patients after SSTR PET/CT.
  • In 4 of 14 studies, SSTR PET/CT was performed after an 111In-Octreotide scan. In this subgroup, additional information by SSTR PET/CT led to a change in management in 39% (range, 16%-71%) of patients.
  • Seven of 14 studies differentiated between inter- and intramodality changes, with most changes being intermodality (77%); intramodality, (23%). (note: intermodality means changes within the same treatment, intramodality means change to another treatment).

In an older study, this slide from a NET Research Foundation conference shows some more interesting statistics:

wp-image-991783422jpg
This slide from a recent NET Research Foundation conference confirms the power of more detailed scanning

Was Ga68 PET a game changer for me?

Yes, I believe so.  I’m now in the ‘bone met club’ and although that single metastasis has probably been there for some time, it’s not a ‘label‘ I was keen to add to my portfolio. If I was to be 100% honest, I’m not totally convinced it’s a metastasis. The scan has brought more light onto my thyroid issue.  In fact it indicates even more potential issues above the diaphragm including what looks like a new sighting around my left pectoral lymph nodes.  The scan also lghts up a known issue in the left clavicle lymph nodes, first pointed out via Octreotide scan in 2010 and biopsy negative.

In addition to a nuclear scan update (routine surveillance), it also formed part of an investigation into progression of my retroperitoneal fibrosis (initially diagnosed 2010 but potential growth spotted on recent surveillance CT).  The Ga68 PET doesn’t make fibrosis light up (it’s not cancerous) but there are some hotspots in the area of the aorta close to the fibrosis, a potential source if the cause.  Surgery is on hold for now as my kidney function is fine following a renal MAG3 scan which reported no blockages. 

It would appear I’m no longer a boring stable patient

The Ga68 PET Scan confirmed:

Bone Metastases. Report indicates “intense focal uptake“. It always amazes me that people can be thankful for having an extra tumour.  I’m thankful I only have a single bone metastasis (right rib number 11). I had read so many stories of those who got their first Ga68 PET and came back with multiple bone metastases. I’ll accept one and add to my NET CV. I have no symptoms of this bone metastasis and it will now be monitored going forward. I’m annoyed that I don’t know how long it’s been there though!

Confirmation and better understanding of the following:

  1. Thyroid lesion There is some uptake showing. A 2014 Biopsy of this lesion was inconclusive and actual 2018 Ga68 PET report infers physiological uptake. I’m already diagnosed hypothyroidism, possibly connected.  (Edit – on ultrasound in Jan 2019, looks slightly smaller than previous check).
  2. Left Supraclavicular Fossa (SCF) Nodes lighting up “intense uptake“.  I’ve had an exploratory biopsy of the SCF nodes, 5 nodes removed negative. Nothing is ‘pathologically enlarged’ in this area. Monitored every 6 months on CT, annually on ultrasound.  I had 9 nodes removed from the left axillary in 2012, 5 tested positive for NETs and this area did not light up. This whole area on the left above the diaphragm continues to be controversial. My surgeon once said I had an unusual disposition of tumours.  (Edit: Nothing sinister or worryingly enlarged showing on Jan 2019 ultrasound – measuring 6mm).
  3. Report also highlights left subpectoral lymph nodes which is new.  The subpectoral area is very interesting as from my quick research, they are closer to the left axillary (armpit) nodes than they are to the SCF nodes. I’m hoping to get an ultrasound of these in January at my annual thyroid clinic (Edit: nothing sinister showing on ultrasound in Jan 2019).
  4. My known liver metastases lit up (remnant from liver surgery 2011) – not marked as intense though. The figure of 3 seems to figure highly throughout my surveillance scans although the PET report said “multiple” and predominately right-sided which fits.
  5. Retroperitoneal area. This has been a problem area for me since diagnosis and some lymph nodes are identified (intense word not used). This area has been highlighted on my 3 octreotide scans to date and was first highlighted in my diagnosis trigger scan due to fibrosis (desmoplasia) which was surrounding the aorta and inferior venous cava, some pretty important blood vessels. I wrote an article on the issue very recently – you can read by clicking here. So this scan confirms there are potentially active lymph nodes in this area, perhaps contributing to further growth of the fibrosis threatening important vessels – read below.

Retroperitoneal Fibrosis (Desmoplasia)

I have learned so much about desmoplasia since this issue arose that I now fully understand why I had to have radical surgery back in 2010 to try to remove as much of the fibrosis as possible from the aortic area. You can read more about this in my article.  Desmoplasia via fibrosis is still very much of an unknown and mystery condition in NETs.

I now know that my fibrosis is classed as clinically significant and according to the Uppsala study of over 800 patients inside my article, I’m in 5% of those affected in this way (2% if you calculate it using just the retroperitoneal area).

It appears this problem has come back with new fibrosis or growth of existing fibrosis threatening to impinge on blood vessels related to the kidneys and also my ureters (kidney to bladder urine flow). The Ga68 PET doesn’t make fibrosis light up (it’s not cancerous) but there are some hotspots in the area of the aorta close to the fibrosis.

I didn’t expect this particular problem to return – it was a bit of a shock. My hormone markers have been normal since 2011 and this just emphasises the importance of scans in surveillance. 

Conventional Imaging is still important though

There’s still quite a lot of hype surrounding the Ga68 PET scan and I get this.  However, it does not replace conventional imaging (CI) such as CT and MRI scans which still have their place in routine surveillance and also in diagnostics where they are normally at least the trigger for ‘something is wrong’. For the vast majority, a CT/MRI scan will find tumours and be able to measure reductions and progress in regular surveillance regimes. In fact, the retroperitoneal fibrosis has appeared on every CT scan since diagnosis but the changes were highlighted on my most recent standalone CT and it triggered the Ga68 PET (although my new Oncologist did say I was due a revised nuclear scan).  It’s not a ‘functional’ issue (although it is caused by functional tumours). In fact the fibrosis is not mentioned on the Ga68 PET because it is not lighting up – but the lymph nodes surrounding it are mentioned and they are under suspicious as being active.

Appropriate Use Criteria for Somatostatin Receptor PET Imaging in Neuroendocrine Tumors

There are actually recommended usages for the Ga68 PET scan here.  For example, it is not recommended for routine surveillance in place of CI.

Scans – ‘horses for courses’

Read a summary of all conventional scans and nuclear scans by clicking here.

Next Steps

I had a meeting with my Oncologist and Surgeon and a surgical plan is possible in the event of a problem. My surgeon explained it all in his wonderfully articulate and brilliant surgical mind. Fortunately it’s not really urgent but pre-emptive treatment may be required at some point as the consequences of kidney/bladder function are quite severe. Following some further checks, the anticipated surgery is on hold for now as my kidney function is fine following a renal MAG3 scan which reported no blockages.  I continue to have monthly renal blood tests and it was hinted another renal MAG3 could be done at the end of the year.

Summary

My game has changed, that’s for sure. I’m now entering a new phase and I’m waiting on details of my revised surveillance regime. However, at least my medical team and I now know what WE are dealing with and the risks vs benefits are currently being assessed. I’m heavily involved in that.

If you can see it, you can detect it. If you can detect it, you can monitor or treat it.

 

Gallium 68 PET Scans – Into the Unknown

OPINION

Cancer is a growth industry …literally! More people are being diagnosed than ever before. Fortunately, more people are surviving than ever before. This is against a backdrop of better awareness, better screening in the big population cancers, and to a certain extent better diagnostic tools, all of which is leading to earlier diagnosis.

So how does this affect Neuroendocrine Cancer?

According to the latest SEER database figures for Neuroendocrine Cancer, one reason for the 7 fold increase in incidence rates since the 1970s is all of those things above including better diagnostics. This has led to a revised set of epidemiological information in many countries that have made the effort to accurately update their cancer registries and there are consistent reports of incidence rates way beyond the recognised rare thresholds. Another piece of good news is that the increase in NET incidence is also due to earlier diagnosis. To sum that up – NETs is also a growth industry.

Better diagnostics

Combined with more awareness and education (including the important pathologists), more NETs than ever are being found, and many found earlier. However, it’s not party time yet because there remains far too many misdiagnoses due to the low population of the disease and the difficulty in diagnosing it. I want to focus on scanning (thus the title of the article). Whilst there are really important factors involved in a diagnosis, such as tumor and hormone markers, and biopsies (tissue is the issue), a scan is very frequently what triggers many deeper investigations to unearth a NET, i.e. if you can see it, you can normally detect it (whatever the ‘it’ is). And I include the widespread availability and increasing advances in endoscopy/ultrasounds/cameras which have also been instrumental in picking up many Gastrointestinal NETs.

The Gallium 68 PET Scan

There’s a lot of excitement about the Gallium 68 PET Scan since it was approved by the US FDA. It’s not new though and has been in use in several countries for some time. It’s a ‘nuclear scan’ and can often form part of what is known as a ‘Theranostic Pair’ (i.e. in conjunction with a therapy – read more here).

What does it do?

It comprises two main components – a PET scanning machine, and the use of a diagnostic imaging agent which is injected into the person undergoing the scan. Most machines have an inbuilt CT which forms part of the scan. The agent is a somatostatin analogue labeled radionuclide (Gallium 68) and basically the PET will then be used to see where the peptide/radionuclide mix ‘loiters’ (i.e. where there are concentrations of somatostatin receptors (SSTR) normally indicating ‘focal intense abnormality‘ of the type that is regularly found with NETs.

Imaging Agents. There are different agent variants, namely, DOTATATE, DOTATOC and DOTANOC. In USA, you may sometimes see this referred as NETSPOT which is more of a commercial label for the agent (NETSPOT is a DOTATATE). Ga68 PET or SSTR PET are common descriptors for the entire process regardless of the compound. Clearly the scan works best for those with ‘somatostatin receptor positive’ tumours.

These newer agents have several benefits over the elderly In111-pentetreotide (Octreotide scan), including improved detection sensitivity, improved patient convenience due to the 2-3 hour length of the study (compared to 2 or 3 days with Octreoscan), decreased radiation dose, decreased biliary excretion due to earlier imaging after radiotracer administration, and the ability to quantify uptake. The quantification of the uptake can help decide whether a patient is suitable for radionuclide therapy such as PRRT. Eventually, all Octreotide scans should be replaced with SSTR PET but it will take some time (and money).

scans for nets
Octreoscan vs Ga68 PET

To confirm the advantages of SSTR PET over Octreotide scans, a study comprising 1,561 patients reported a change in tumour management occurred in over a third of patients after SSTR PET/CT even when performed after an Octreotide scan. Worth pointing out that SSTR PET is replacing the ageing Octreotide scan and not conventional imaging (CI). You can see the recommended scenarios for use of SSTR PET in this article published by the Journal of Nuclear Medicine. The slide below is interesting, although it was a small study. However, you can see the treatment changes as a result of a Ga68 PET are quite striking.

This slide from a NET Research Foundation conference confirms the power of more detailed scanning

 

Appropriate Use Criteria for Somatostatin Receptor PET Imaging in Neuroendocrine Tumors

I see many people complaining because the cannot get access to a Ga68 PET which is available through their healthcare system or local hospital. Many of these issues are insurance based.  Worth pointing out that there are actually recommended usages for the Ga68 PET scan here.  For example, it is not recommended for routine surveillance in place of Conventional Imaging (CI).

Any pitfalls with Ga68 PET Scan?

When you look at the study data above, it looks like an excellent addition to the diagnostic and surveillance toolkit for NETs. However, one of the challenges with modern scanning equipment and techniques is the ability to correctly interpret the results – in my opinion, this is almost as important as the efficiency of the machines and radionuclides. This requirement has been acknowledged in many articles and I particularly like this technical paper from a very experienced nuclear medicine physician Professor Michael Hofman from the Centre for Cancer Imaging at the Peter MacCallum Cancer in Melbourne. I had a chat with Professor Hofman who added that this is a very sensitive scan, so often picks up “new” disease, which isn’t really new, just never identifiable on standard imaging. However, there’s an excellent section on pitfalls in interpretation and I’m quoting an abstract below.

“Although GaTate PET/CT is a highly sensitive and specific technique for NETs, the attending physician or radiologist must be aware of various physiologic and other pathologic processes in which cellular expression of SSTR can result in interpretative error. Most of these processes demonstrate low-intensity and/or nonfocal uptake, in contrast with the focal intense abnormality encountered in NETs. Causes of interpretative pitfalls include prominent pancreatic uncinate process activity, inflammation, osteoblastic activity (degenerative bone disease, fracture, vertebral hemangioma), splenunculi or splenosis, and benign meningioma.”

“The highest-intensity physiologic uptake of GaTate is seen in the spleen, followed by the adrenal glands, kidneys, and pituitary gland”

It follows that failure to interpret nuclear scans alongside the patient’s clinical history can sometimes result in two big issues for patients:

1. Unnecessary worry when ‘something’ shows up which is actually a false positive.

2. Something which leads to irreversible treatment when it is was not required.

Just imagine something which is 40 times better than current PET scan technology? That’s what the scientists are working on now. Here’s an example called “EXPLORER“. You can update yourself here. The issue of interpretation will be even more difficult when the new generation of scans appear. There’s an excellent article from Cancer Research UK talking about the modern phenomenon called ‘overdiagnosis’ – read here

Lanreotide and Octreotide and timing the scan?

From the same technical document referred above, here’s an extract (updated to include Lanreotide). “Uptake at physiologic and pathologic sites may change in patients who undergo concomitant short- or long-acting somatostatin analog therapy, which competes with the radiotracer for bioavailability. We generally discontinue short-acting octreotide for 12–24 hours and perform imaging in the week before the next dose of long-acting Octreotide/*Lanreotide, which is typically administered monthly“.  It’s actually the same text as found in the manufacturer’s drug leaflet (click here). More evidence behind the reason for this restriction is found here (please refer to the comments on Ga68 PET – the article also covers the issue of PRRT which is very interesting as a separate subject to the scan timings).

*added by the author for completeness.

Having my first Ga68 PET Scan after 8 years of  living with NETs? 

When I was offered my very first Ga68 PET/CT at my recent 6 monthly surveillance meeting, I was both excited and apprehensive. I was diagnosed in 2010 and my staging was confirmed via an Octreotide Scan pointing out two further deposits (one of which has since been dealt with). I’ve had two further Octreotide Scans in 2011 and 2013 following 3 surgeries. The third scan in 2013 highlighted my thyroid lesion – still under a watch and wait regime. So far, my 6 monthly CT scans seemed to be adequate surveillance cover and my markers remain normal.

I’m apprehensive because of the ‘unknown’ factor with cancer – what is there lurking in my body that no-one knows about and which might never harm me.

I’m excited because it might just confirm that there is nothing new to worry about.

However, I’m both excited (morbidly) and apprehensive because the scan might find something potentially dangerous. As we know, NETs are mostly slow growing but always sneaky. That said, at least I will know and my medical team will know and be able to assess the risk and decide on a course of action.

Doing the Scan

On 5th June 2018, I attended a very experienced Ga68 PET establishment called Guys Cancer Centre in London.  I arrived and was immediately taken under the wing of the nuclear medicine guys who asked me fairly in depth questions about my clinical background.  They then inserted a cannula ready for the injection of the radiolabelled tracer.  I was then installed in the ‘hot room’ where they injected the radionuclide tracer through the cannula and then I had to remain in the hot room for 1 hour to let the tracer circulate.  After 1 hour, I was taken to the PET scanner and it took around 30-35 minutes. Following that I was allowed to leave for home.  It was an extremely easy experience and a significant improvement on doing the 3 day Octreotide scan.

20180605_141229

Door to the ‘hot room’

The Results of the Ga68 PET Scan – CLICK HERE

Lutetium Lu 177 dotatate (Lutathera®) – PRRT

prrt update

Short PRRT Primer

What is Peptide Receptor Radionuclide Therapy (PRRT)?

For those who are still not sure what it’s all about.  This is a non-surgical treatment which is normally administered intravenously.  It’s based on the use of somatostatin receptors to attract a ‘radiopeptide’.  The radiopeptide is a combination of a somatostatin analogue and a radioactive material. As we already know, somatostatin analogues (i.e. Lanreotide/Octreotide) are a NET cell targeting drug, so when combined radioactivity, it binds with the NET cells and delivers a high dose of targeted radiation to the cancer while preserving healthy tissue.  In general, patients tend to receive up to 4 sessions spaced apart by at least 2 months. 

PRRT will not work on all NETs and not everyone will suited to this treatment. In general, for this treatment to be more successful, you must have somatostatin receptors in your tumors. Success rates are not 100% – it should not be considered a cure or ‘magic bullet’. However, the results are said to be pretty good.  The NETTER-1 trial data which has led to formal approval in Europe, USA and other areas, can be found here.

LATEST ON EXPANDED NETTER-1 TRIAL DATA.  “Novartis has announced presentation of a new analysis of Lutathera (lutetium Lu 177 dotatate) NETTER-1 data at the 2018 European Society for Medical Oncology (ESMO) congress examining the impact of Lutathera treatment on patients with low, medium or high liver tumor burden. The data show that Lutathera treatment results in significant improvement in progression free survival (PFS) regardless of the extent of baseline liver tumor burden (LTB), elevated alkaline phosphatase (ALP) liver enzyme or presence of large (>30mm diameter) lesion in patients with progressive midgut neuroendocrine tumors (NETs) compared to octreotide LAR alone.”

THERANOSTICS

Understanding the terminology is half the battle in understanding the latest developments. I’ve included Ga-68 PET scans within this section (or in more general terms Somatostatin Receptor PET (SSTR PET)) as the term ‘Theranostics‘ is becoming a commonly used theme.  Theranostics is a joining of the words diagnostics and therapy.

LUTATHERA is the radionuclide ‘mix’ for use in Peptide Radio Therapy Treatment (PRRT).  You may also see this drug called ‘Lutetium’ or ‘Lu-177 dotatate’, or just ‘Lu-177’ on its own. Yttrium 90 (Y-90) is a  radionuclide also used in PRRT. 

NETSPOT (USA) or SOMAKIT TOC (Europe) is not PRRT but it is the commercial names for the radiopeptide used in Gallium 68 (Ga-68) PET diagnostic scans.

Together they form a ‘theranostic pair’. Theranostics is apt as together (NETSPOT / SOMAKIT TOC and Lutathera), both target NETs expressing the same somatostatin receptor, with Lutathera intended to kill tumor cells by emitting a different kind of low-energy, short-range radiation than that of the diagnostic version.

Moreover, thanks to the theranostic approach that nuclear medicine allows, Novartis/AAA’s NETSPOT/SomaKit TOC products will be able to determine when Lutathera is the appropriate treatment.

Read more about Theranostics by clicking here.

Hasn’t the therapy has been in use for some time?

Of course, this therapy has been in use in Europe and some other places for some time but to be honest, they have been on a limited scale and never formally approved by national drug agencies.  Despite its extensive use, the EU approval in 2017 was actually the very first approval of PRRT anywhere in the world. For example, in UK, it was used for some time for those in need but was removed from routine availability through a ‘slush fund’ formally known as the Cancer Drugs Fund – to cut a long story short, the funding source was cut off, although there are still ways of obtaining the treatment pending formal acceptance by the NHS (certain criteria apply).

In the meantime, I constantly see stories of patients travelling to Switzerland, Germany, Netherlands, Sweden, Great Britain and others; mostly at their own cost.   However, it does indicate one thing, there is a huge unmet need in that many patients do not have access to the best treatments in their own country. I see this daily through many private messages.

What about Grade 3 (High Grade) Neoplasms?  

The main treatment for Grade 3 is chemotherapy, particularly poorly differentiated.  PRRT tends to work better with efficient somatostatin receptors (i.e. somatostatin receptor-positive tumors).  The European approval wording only covers Grades 1 and 2. The US FDA approval indicates “somatostatin receptor-positive tumors”.  It’s also worth noting that with Grade 3, are more likely to exist in Grade 3 well differentiated NETs, particularly in the lower Ki-67 readings. However, there’s an interesting study from Australia which might be useful to read – check out the abstract here (note the full version is not available free).

Merkel Cell Carcinoma.  Although not indicated for this type of Neuroendocrine Neoplasm, there is evidence to suggest that this skin Neuroendocrine Carcinoma does express somatostatin receptors.  Read more here.

merkel cell prrt ga68 images
Case Rep Oncol 2019;12:98–103
Merkel Cell Carcinoma
https://doi.org/10.1159/000496335

What about Pheochromoctyoma/Paraganglioma?

There’s actually still a trial for Pheochromocytoma/Paraganglioma (Pheo/Para).  It is known that Pheo/Para can have somatostatin receptor tumors so a useful trial. The aim of the trial is to assess the safety and tolerability.  You can read about the trial here.

Where can I get PRRT?

global icon
Where can I get PRRT?

Regional Updates

The aim of this section is to update on a regional basis in order to inform an international community of followers and readers.

Background

I wanted a place to review what is happening globally given my following.  In many countries, however, I’m dependent on feedback from patients in those countries. Please note this is not intended to be a 100% complete breakdown on everything about PRRT or PRRT centres – it’s a summary.  It should be clear from below but please bear that in mind when reading.

This section of this article will cover each region, indicating where PRRT can be obtained (as far as I know). It is not designed to indicate whether this is through public or private facilities (this will depend to too many factors beyond the reach of this article). Please note this is not intended to be a 100% complete breakdown on every single PRRT centre – it’s a summary.  This actually should be clear from below but please bear that in mind when reading.

UNITED KINGDOM

On 29 August 2018. National Institute for Health Care Excellence (NICE) England has formally published that Lutetium (177Lu) oxodotreotide, within its marketing authorisation, is an option for treating unresectable or metastatic, progressive, well-differentiated (grade 1 or grade 2), somatostatin receptor-positive gastroenteropancreatic neuroendocrine tumours (NETs) in adults.  CLICK HERE to read the approval.  Currently available in London and Liverpool.  The Christie Mancheter is advertising it on their website and there is anecdotal talk of Newcastle and Leicester going live soon. I await the rollout of PRRT – watch this space for a table listing. 

On 9 July 2018. The Scottish Medicines Consortium (NICE equivalent) has approved lutetium 177Lu (Lutathera) for patients in NHS Scotland. Good news for Scotland once their hospitals have the capability to deliver. Scottish patients would then not need to travel to England for the NHS Scotland funded treatment. Read more here.

It is funded in Wales and Northern Ireland but is currently administered in England with inter NHS budget transfers.

Canada

On 7th Feb 2019, Health Canada approved Lutathera™ (lutetium (177Lu) oxodotreotide) for the treatment of unresectable (not removable by surgery) or metastatic, well-differentiated, somatostatin receptor-positive (expressing the somatostatin receptor) gastroenteropancreatic neuroendocrine tumors (GEP-NETs) in adults with progressive disease.  The treatment was previously available on a trial basis. Read more here.

Site update to follow but the following trial locations may be up and running first:

Juravinski Hamilton,
LHSC London,
PMCC Toronto,
Sunnybrooke Toronto.


USA

PRRT was approved in USA on 26 Jan 2018. The approval is for the treatment of somatostatin receptor positive gastroenteropancreatic neuroendocrine tumors (GEP-NETs), including foregut, midgut, and hindgut neuroendocrine tumors in adults. CLICK HERE.

The extended access program (trial) is no longer offered but these locations should be ahead of the game in terms of provision, notwithstanding insurance and provision of sufficient nuclear material.

In the meantime, known USA sites offering routine “live site” insurance based PRRT treatment are as follows – please note information has been gleaned from US patients due to no other consolidated source of this information being readily available. It’s possible some patients got mixed up between trial locations and live locations so let me know of any omissions or additions/corrections – thanks in advance.

DRAFT – NOT YET COMPLETE – (as at 24 Mar 2019)

 

STATE LOCATION Due in Service? CONTACT DETAILS
Arizona Banner Now Dr Boris Naraev
California UCSF Medical Center Mission Bay San Francisco Now tbc
California – Antioch Kaiser Permanente Antioch Medical Center Now tbc
California Cedars Sinai Medical Center LA now tbc
California Stanford Medical Center Now tbc
California Kaiser Permanente Los Angeles Medical Center Now tbc
California Hoag Hospital Newport Beach Now tbc
California UCLA Health Now tbc
California Kaiser Santa Clara Medical Center Now tbc
California City of Hope LA Now tbc
California San Diego Now tbc
Connecticut Yale New Haven Medical Center Now tbc
Colorado Rocky Mountain Cancer Center Denver Now Dr Eric Liu
Colorado University of Colorado UC Health Denver Now tbc
Florida Moffat Tampa Now Dr Strosberg
Florida University of Miami Now tbc
Florida Mayo Jacksonville Now tbc
Florida Winter Park, Florida Radiation Oncology Orlando Now David Diamond MD
Florida Orlando Health Now tbc
Georgia CCTA Newnan, Atlanta Now Dr. Phan
Hawaii Queen’s Medical Center Now Dr. Marc Coel
Illinois Rush University Chicago Now
Illinois Northwestern Chicago now tbc
Illinois The University of Chicago Medicine now Xavier M. Keutgen, MD
Illinois Loyola University Medical Center Maywood now tbc
Indiana Indiana University Health now tbc
Iowa University of Iowa now Dr T O’Dorisio
Kansas University of Kansas Medical Center Fairway now tbc
Kentucky University of Kentucky, Markey Cancer Center now tbc
Louisiana Ochsner now tbc
Maryland John Hopkins Baltimore now tbc
Massachusetts Dana Farber Boston Now tbc
Massachusetts Massachusetts General Hospital Now tbc
Michigan Ann Arbor Now tbc
Michigan Detroit – Karmanos Cancer Center Now tbc
Minnesota Mayo Rochester 26 Apr 2018 Dr. Thor Halfdanarson
Minnesota University of Minnesota Health Now tbc
Missouri Sara Canon Cancer Center Kansas City Now tbc
Missouri Siteman Cancer Center St. Louis/Barnes Jewish Hospital St. Louis Now tbc
Nebraska CHI Bergan Now Dr Samuel Mehr
Nebraska Nebraska Cancer Specialists Omaha Now Dr Samuel Mehr
New York Lenox Hill NYC Now tbc
New York Sloan Kettering Now tbc
New York Roswell Park Buffalo Now Dr Iyer
New York Mount Sinai Now tbc
New York NYU Langone Now tbc
North Carolina Dukes Durham Now tbc
Ohio The James, Columbus Now Dr Shah
Oregon Oregon Health & Science University (OHSU) Now tbc
Pennsylvania UPMC Pittsburgh Now tbc
Pennsylvania Fox Chase Philadelphia Now Dr Paul Engstrom
Rhode Island Rhode Island Hospital Providence Now Dr Paul Engstrom
Tennessee Vanderbilt Nashville Apr 2018 tbc
Texas MD Anderson Houston Summer 2018 tbc
Texas Excel Diagnostics Houston Now tbc
Texas CHI St Lukes Houston Now tbc
Utah Huntsman Cancer Institute, Salt Lake City 10 May tbc
Vermont University of Vermont Medical Center Now Jay Kikut, MD, Director of Nuclear Medicine and PET
Virginia Carilion Clinic Roanoke Now tbc
Washington (State) Virginia Mason Seattle Now Dr. Hagen Kennecke
Washington (DC) VMedStar Georgetown University Hospital Now tbc
West Virginia VMU Cancer Institute Morgantown Now Shalu Pahuja, M.D
Wisconsin UW Health Madison, Carbone Cancer Center Now Noelle K. LoConte, MD Specialty: Medical Oncology Primary Location: UW Carbone Cancer Center (608) 265-1700 (800) 323-8942
 Wisconsin  Froedtert Milwaukee  Now  Dr Thomas

Europe 

The European Medicines Agency (EMA) “market authorisation” received a positive indication on 20th July followed by EC approval on 29 Sep 2017.   The positive indication reads “Lutathera is indicated for the treatment of unresectable or metastatic, progressive, well differentiated (G1 and G2), somatostatin receptor positive gastroenteropancreatic neuroendocrine tumours (GEP NETs) in adults”. Of Course, the decision to fund the drug will be with national approval organisations.  Whilst I’m sure there are many more, these well-known centres have been making PRRT available for some years (but please note there are others):

Netherlands – Rotterdam Treatment Centre – click here

Netherlands – the combined NET centres of the UMCU Utrecht and AVL Amsterdam have an ENET certification and they both do PRRT.

UMCU – Utrecht
https://www.umcutrecht.nl/nl/Ziekenhuis/Ziekte/PRRT-behandeling-bij-NET-kanker
(only available in dutch)

AVL – Amsterdam
https://www.avl.nl/behandelingen/peptide-receptor-radionuclide-therapie-prrt/
(only available in dutch)

Sweden – Department of Endocrine Oncology Uppsala University Hospital – click here

Switzerland – University Hospital Basel, Radiology & Nuclear Medicine Clinicclick here

Germany – Zentralklinik Bade Berkaclick here

Denmark – ‘Rigshospitalet’ since 2009. They have treated around 250 patients- and given 800 treatments.

Finland – Helsinki: Docrates Cancer Center

I’d be interested to hear from countries in Europe with their full list of centres or a link to it.

Australia

Australia seems to be ahead of the game or that is what I sense when I read output from there.  There’s a good section on the Australian effort – click here.

New Zealand

These guys have had to fight to get some progress on the provision of PRRT.  Currently New Zealanders have to go to Melbourne Australia for treatment – almost 50 New Zealanders with NETs are currently raising tens of thousands of dollars to pay for treatment in Australia because the life-prolonging treatment isn’t available locally. But this could change in 2018.  Unicorn Foundation New Zealand announced that Pharmac, the New Zealand government agency that decides which pharmaceuticals, have said that PRRT will be funded for patients with medium priority for the treatment of unresectable or metastatic, well-differentiated NETs (irrespective of primary site) that express somatostatin receptors.

Africa

South Africa:

Middle East, Asia and the Far East

Turkey – Istanbul, Dr.Levent Kabasakal.

IsraelHadassah Medical Center, Jerusalem – click to read

Lebanon – The American Hospital of Beirut – Dr Ali Shamseddine “We have started using Lu-177 here in Lebanon. So far, we have treated 3 patients, with good response. The operational cost is much less than in Europe”.  

Ali Shamseddine, MD, CHB Professor and Head of Division as04@aub.edu.lb

India – Mahatma Gandhi Cancer Hospital, Visakhapatnam. Recently started radionuclide therapy. Although only currently available privately, some patients have been sponsored by the companies that they work for. Point of contact is Dr. K. Raghava Kashyap. I’ve been assured by CNETS India that many locations have PRRT capability – contact them direct please.

TATA Memorial Hospital Mumbai (waiting time is long, but cost is low: $200) and there are private clinics in Pune (cost is $1500) and Bengaluru (cost is around $6000).  (Info from Russian patient group)

Malaysia

Sunway medical Centre

Beacon hospital

Pakistan – check out this article – click here

Singapore – Singapore General Hospital and National University Hospital.  

Philippines – St. Luke’s Medical Center, Global City, Taguig, Metro Manila.

South America

Chile – Instituto Oncológico Fundación Arturo López Pérez, Santiago

——————————————–

What’s next for NETs PRRT?

See this great summary from NET Research Foundation of what might be next plus basic facts about PRRT – click here

Thanks for reading

Ronny

I’m also active on Facebook. Like my page for even more news. I’m also building up this site here: Ronny Allan

Disclaimer

My Diagnosis and Treatment History

Most Popular Posts

Sign up for my twitter newsletter

Remember ….. in the war on Neuroendocrine Cancer, let’s not forget to win the battle for better quality of life!


wego-blog-2018-winner


patients included

Please Share this pos

Theranostics for Neuroendocrine Cancer – A Find and Destroy Mission

 

theranostics
Courtesy of Pashtoon Kasi MD on Twitter https://twitter.com/pashtoonkasi/status/1078675398601396224

 

Theranostics is a joining of the words therapeutics and diagnostics. You may also see it conveyed as ‘Theragnostics’ and these terms are interchangeable.  The basic aim of theranotistics is to find and then destroy the ‘bad guys‘.  With Neuroendocrine Cancer, finding the tumours (the bad guys) can often be a challenge – they can be small and/or difficult to find – they are sometimes expert at camouflage.  Moreover, once found, they can then be difficult to treat (destroy), as they can often prove resistant to conventional cancer drugs and many are inoperable due to sheer quantity, spread and positioning.  When they are found and identified, it’s also really helpful to know from the intelligence gathered, how successful the destroy (therapeutic) part of the mission might be.

The nuclear scan uses the same nuclear material as the therapy, therefore if you cancer lights up on the nuclear scan, then the therapy will find its way to the cancer and hopefully work well. That is the beauty of theranostic pairing, i.e. the use of the same agent in the diagnostics – the ability to find, estimate likely success criteria and then hopefully destroy – or at least reduce the capability of the tumours and extend life.

A great example of an approved Theranostic Pair in Neuroendocrine Cancer, is the combination of the Somatostatin Receptor based Ga68  PET scan using NETSPOT or SomaKit TOC™ (US/Europe respectively) and Peptide Receptor Radiotherapy (PRRT) using Lutathera which both target NETs expressing the same somatostatin receptor, with PRRT intended to kill tumor cells by emitting a different kind of low-energy, short-range radiation than that of the diagnostic version. As mentioned above, the Ga68 PET scan can give a reasonably indication of therapeutic success using PRRT based on measurements taken during the scan (too complex for this article).

Theranostics – a step towards personalised medicine – graphic courtesy of Advanced Accelerator Applications.

THERANOSTICS – FIND

Octreoscan vs Ga68 PET

Ga68 PET 

Newer imaging agents targeting somatostatin receptors (SSTR) labelled with 68 Ga have been developed, namely, DOTATATE, DOTATOC and DOTANOC. They are collectively referred to as SSTR PET.

The full titles of the 3 types are:

68Ga-DOTA-Phe1-Tyr3-Octreotide (TOC),
68Ga-DOTA-NaI3-Octreotide (NOC),
68Ga-DOTA-Tyr3-Octreotate (TATE).

The main difference among these three tracers (DOTA-TOC, DOTA-NOC, and DOTA-TATE) is their variable affinity to SSTR subtypes. All of them can bind to SSTR2 and SSTR5, while only DOTA-NOC shows good affinity for SSTR3.

These agents have several benefits over In111-pentetreotide (Octreotide scan), including improved detection sensitivity, improved patient convenience due to the 2 hour length of the study (compared to 2 or 3 days with Octreoscan), decreased radiation dose, decreased biliary excretion due to earlier imaging after radiotracer administration, and the ability to quantify uptake. The quantification of the uptake can help decide whether a patient is suitable for PRRT. Eventually, all Octreotide scans should be replaced with SSTR PET.  To confirm the advantages of SSTR PET over Octreotide scans, a study comprising 1,561 patients reported a change in tumour management occurred in over a third of patients after SSTR PET/CT even when performed after an Octreotide scan. Worth pointing out that SSTR PET is replacing the ageing Octreotide scan and not conventional imaging (CI).  You can see the recommended scenarios for use of SSTR PET in this article published by the Journal of Nuclear Medicine

Ga68 PET scans have been in many locations for some time. Current excitement is focused on USA locations with Ga68 PET (NETSPOT) only recently approved (DOTATATE). Other countries/scan centres may use one of the other types of imaging agent.

Read much more about this scan in my detailed article on Ga68 PET here.

So SSTR PETs above have the ability to find and estimate likely success criteria for therapy.  We are now in a position to move on to ‘THERApy’ – e.g.  Peptide Receptor Radiotherapy or PRRT.

THERANOSTICS – DESTROY

click on picture to watch video

Lutathera® (note the ‘THERA’ which makes up the brand name)

Definitions:

Europe Approval: LUTATHERA®(lutetium (177Lu) Oxodotreotide) is indicated for the treatment of unresectable or metastatic, progressive, well differentiated (G1 and G2), somatostatin receptor positive gastroenteropancreatic neuroendocrine tumours (GEPNETs) in adults.

USA Approval: LUTATHERA® (lutetium Lu 177 dotatate) is indicated for the treatment of somatostatin receptor-positive gastroenteropancreatic neuroendocrine tumors (GEP-NETs), including foregut, midgut and hindgut neuroendocrine tumors in adults.

For commercial purposes, the drug may be slightly different on a regional basis. For all intents and purposes it does the same job.

As an example of how the drug is administered, please watch this short video from the European site:

Video courtesy of Advanced Accelerator Applications

Please see the following post for a summary of PRRT activity worldwide.  Please note this linked article is not designed to contain a list of every single location or country available – please bear that in mind when you read it – CLICK HERE

I’m very grateful to the team at Advanced Accelerator Applications (a Novartis Company) for allowing me to use their site for graphics and videos.

In another ‘theranostic’ development, check out my article on the Satoreotide trial (Ops 201/202) from Ipsen (of Lanreotide fame) – click here to read – the trial is recruiting.

Thanks for reading

Ronny

I’m also active on Facebook. Like my page for even more news. I’m also building up this site here: Ronny Allan

Disclaimer

My Diagnosis and Treatment History

Most Popular Posts

Sign up for my twitter newsletter

Read my Cure Magazine contributions

Remember ….. in the war on Neuroendocrine Cancer, let’s not forget to win the battle for better quality of life!

wego-blog-2018-winner

RonnyAllan.NET is an accredited Patients Included Site

Please Share this post