Diabetes – The NET Effect


My chest infection is now settled, as too is the excitement and apprehension behind my first ever Ga68 PET – the outcome of that is still a work in progress. Earlier this year, my thyroid ‘lesion’ on watch and wait was given a ‘damping down’ with the prescription of a thyroid hormone supplement but I await a re-ignition of that small bush fire downstream.

Bubbling behind the scenes and clamoring for attention is the spiking of my blood glucose test results and I was very recently declared ‘at risk’ for diabetes One of my followers entitled a post in my group with “The hits keep coming” in reference to encountering yet another problem in the journey with Neuroendocrine Cancer. I now know how she feels, this issue is a bit of a ‘left fielder’. However, having analysed the situation and spoken to several doctors, I can now put pen to paper.

Neuroendocrine Cancer is not a household name (…… I’m working on that) but diabetes certainly is. The World Health Organisation reports that the number of adults living with diabetes has almost quadrupled since 1980 to 422 million adults. In USA, estimates from CDC stated around 10 million people diagnosed with diabetes with a further 84 million in pre-diabetes state (at risk). In UK around 3.7 million people have diabetes with about 4 times that amount ‘at risk’. It’s a growth industry (…….. but so is NETs – in the last 40 years, the incidence of NETs is rising at a faster rate than diabetes, a disease which some writers have described as an epidemic).

With those numbers, it follows that many NET patients will be diabetic before diagnosis, some will succumb to diabetes whether they have NETs or not, and some may have an increased risk of succumbing due to their treatment. Some may even be pushed into diabetes as a direct result of their NET type or treatment. It’s important to understand diabetes in order to understand why certain types of NET and certain treatments could have an involvement.

The Pancreas

For understanding of this article, it’s worth noting the pancreas has two main functions: an exocrine function that helps in digestion and an endocrine function that regulates blood sugar. I have talked about the exocrine function in relationship to Neuroendocrine Cancer at length – check out this article on Pancreatic Enzyme Replacement Therapy. In this article, I now want to cover the issues with the endocrine function and blood sugar. First a short primer on diabetes – it is necessarily brief for the purposes of this article.

 

Diabetes Primer

TypeS OF DIABETES

Type 1 and Type 2 Diabetes are fairly well-known. There’s actually more than two types, but these are the most common. Type 2 is the most prevalent with around 90% of diabetes cases. When you’ve got Type 1 diabetes, you can’t make any insulin at all. If you’ve got Type 2 diabetes, the insulin you make either can’t work effectively, or you can’t produce enough of it. Additional types may come up in the subsequent discussion.

What is the problem?

What all types of diabetes have in common is that they cause people to have too much glucose (sugar) in their blood. But we all need some glucose. It’s what gives us our energy. We get glucose when our bodies break down the carbohydrates that we eat or drink. And that glucose is released into our blood. We also need a hormone called insulin. It’s made by our pancreas, and it’s insulin that allows the glucose in our blood to enter our cells and fuel our bodies.

If you don’t have diabetes, your pancreas senses when glucose has entered your bloodstream and releases the right amount of insulin, so the glucose can get into your cells. But if you have diabetes, this system doesn’t work properly. Diabetes is associated by being overweight but there isn’t a 100% correlation with that. However, when an individual becomes overweight, there is an increase in free fatty acids in the blood stream which may contribute to reduced insulin sensitivity in the tissues, leading to increased glucose levels in blood.

Symptoms and diagnosis of Diabetes

Different people develop different symptoms. In diabetes, because glucose can’t get into your cells, it begins to build up in your blood. And too much glucose in your blood causes a lot of different problems. To begin with it leads to diabetes symptoms, like having to wee a lot (particularly at night), being incredibly thirsty, and feeling very tired. You may also lose weight, get infections like thrush or suffer from blurred vision and slow healing wounds.

I see these symptoms mentioned very frequently and normally people are trying to associate them with NETs and/or the treatment for NETs.

Diabetes diagnosis is normally triggered diagnosed based on blood tests such as fasting Blood Glucose (snapshot) and/or Glycated Hemoglobin (A1C) or HbA1C.

Complications

Over a long period of time, high glucose levels in your blood can seriously damage your heart, your eyes, your feet and your kidneys. These are known as the complications of diabetes.

But with the right treatment and care, people can live a healthy life. And there’s much less risk that someone will experience these complications.

What are the direct connections with Diabetes and NETs?

It’s not surprising that diabetes is mostly associated with Neuroendocrine Tumors of the Pancreas but there are other areas of risk for other types of NETs including to those who are existing diabetics – see below.

Surgery

The main types of surgery for Neuroendocrine Tumors of the Pancreas are Distal Pancreatectomy (tail), Sub-total pancreatectomy (central/tail), Classic Whipple (pancreaticoduodenectomy – head and/or neck of pancreas), Total pancreatectomy (remove the entire pancreas) or an Enucleation (scooping out the tumour with having to remove too much surrounding tissue). From the PERT article link above (exocrine function), you can see why some people need this treatment to offset issues of reduced production of pancreatic enzymes. The same issue can develop with a reduced endocrine function leading to the development of diabetes.

NET Syndromes

The different types of functional pancreatic NETs often called syndromes in their own right due to their secretory role. One might think that Insulinomas are connected to diabetes issues but this hormonal syndrome is actually associated with low blood sugar (hypoglycemia), although low blood sugar can turn out to be a complication of diabetes treatment.

A NET syndrome known as Glucagonoma (a type of functional pancreatic NET) is associated with high blood glucose levels. About 5-10% of pancreatic neuroendocrine tumors are Glucagonomas, tumors that produce an inappropriate abundance of the hormone glucagon. Glucagon balances the effects of insulin by regulating the amount of sugar in your blood. If you have too much glucagon, your cells don’t store sugar and instead sugar stays in your bloodstream. Glucagonoma therefore leads to diabetes-like symptoms (amongst other symptoms). In fact Glucagonoma is sometimes called the 4D syndrome – consists of diabetes, dermatitis, deep venous thrombosis (DVT), and depression.

Another functional pancreatic NET known as Somatostatinoma is prone to developing insulin resistance. Somatostatinomas produce excessive amounts of somatostatin which interferes with the insulin/glucagon function and could therefore lead to diabetes.

Diabetes caused by cancer or cancer treatment

Worth noting that this type of diabetes is sometimes known as ‘Pancreatogenic diabetes’ and this is actually classified by the American Diabetes Association and by the World Health Organization as type 3c diabetes mellitus (T3cDM) and refers to diabetes due to impairment in pancreatic endocrine function due to acute cancer and cancer treatment (and several other conditions). The texts tend to point to cancers (and other conditions) of the pancreas rather than system wide. Prevalence data on T3cDM are scarce because of insufficient research in this area and challenges with accurate diabetes classification in clinical practice. (Authors note: Slightly confusing as many text say that type 3 diabetes is proposed for insulin resistance in the brain (diabetes associated with Alzheimer’s disease).  There’s another term for a complete removal of the entire pancreas – Pancreoprivic Diabetes

Other treatment risks

Somatostatin Analogues (e.g. Octreotide and Lanreotide) are common drugs used to control NET Syndromes and are also said to have an anti-tumor effect. They are known to inhibit several hormones including glucagon and insulin and consequently may interfere with blood glucose levels. The leaflets for both drugs clearly state this side effect with a warning that diabetics who have been prescribed the drug, should inform their doctors so that dosages can be adjusted if necessary. The side effects lists also indicates high and low blood glucose symptoms indicating it can cause both low and high blood glucose (hypoglycemia and hyperglycemia). For those who are pre-diabetic or close to pre-diabetic status, there is a possibility that the drug may push blood tests into diabetic ranges.
Afinitor (Everolimus). The patient information for Afinitor (Everolimus) clearly states Increased blood sugar and fat (cholesterol and triglycerides) levels in blood: Your health care provider should do blood tests to check your fasting blood sugar, cholesterol and triglyceride levels in the blood before you start treatment with AFINITOR and during treatment with AFINITOR”
Sutent (Sunitinib). The patient information for Sutent (Sinitinib) clearly states that low blood sugar (hypoglycemia) is a potential side effect. It also advises that low blood sugar with SUTENT may be worse in patients who have diabetes and take anti-diabetic medicines. Your healthcare provider should check your blood sugar levels regularly during treatment with SUTENT and may need to adjust the dose of your anti-diabetic medicines.

In rare cases, certain NETs may produce too much Adrenocorticotropic hormone (ACTH), a substance that causes the adrenal glands to make too much cortisol and other hormones. This is often associated with Cushing’s syndrome. Cortisol increases our blood pressure and blood glucose levels with can lead to diabetes as a result of untreated Cushing’s syndrome.

Summary

I think it’s sensible for all NET patients, particularly those with involvement as per above and who are showing the signs of hypoglycemia and hyperglycemia, to be checked regularly for blood glucose and if necessary HbA1c. Many patient information leaflets for the common NET treatments also indicate this is necessary. Always tell your prescribing doctors if you are a diabetic or about any history of low or high blood glucose before treatment for NETs.

My brush with Diabetes (as at Jan 2019)

My blood glucose levels started to climb slightly in 2016 but HbA1c remained normal. However, an HbA1c test in early 2018 put me into pre-diabetic range (44 mmoL/moL). I explained some of the above article to my GP who is corresponding with a diabetes expert at secondary care – the expert suggested that I need to be monitored carefully as weight loss is not necessarily the best response. I have kept my NET team up to date.

At the time of updating, two separate and sequential HbA1c tests (3 month interval) came back normal at 36 mmoL/moL.  I’m pragmatic enough to know that I do not need to lose weight as one of the aims of reducing my blood glucose and HbA1c levels (something emphasised by the above mentioned diabetes specialist).

I even got on my bike to do a little bit more exercise just in case!

At this point, I cannot yet say if this is the beginning of progressive Type II diabetes or if my medication is causing these spikes in my blood glucose and HbA1c. Judging by 2 x normal HbA1c, looks like the somatostatin analogue (Lanreotide in my case) may caused a spike to a pre-diabetes score.  I will keep you posted.

Summary – if you are noticing these symptoms, get your blood sugar checked (with acknowledgement to Dr Pantalone from Cleveland Clinic)

1. You’re making more trips to the bathroom

Having to go to the bathroom more than normal, particularly at night, is a sign that your blood sugar might be out of whack.

Dr. Pantalone says one of his patients came in for a diagnosis after a family member noticed that he was using the bathroom during each commercial break when they watched TV.

2. You’re getting frequent urinary or yeast infections

When your blood sugar is high and your kidneys can’t filter it well enough, sugar ends up in the urine. More sugar in a warm, moist environment can cause urinary tract and yeast infections, especially in women.

3. You’re losing weight without trying

If you have diabetes, your body isn’t able to use glucose (sugar) as effectively for its energy. Instead, your body will start burning fat stores, and you may experience unexpected weight loss.

4. Your vision is getting worse

High sugar levels can distort the lenses in your eyes, worsening your vision. Changes in your eyeglass prescription or vision are sometimes a sign of diabetes.

5. You’re feeling fatigued or exhausted

Several underlying causes of fatigue may relate to diabetes/high sugar levels, including dehydration (from frequent urination, which can disrupt sleep) and kidney damage.

This feeling of exhaustion is often persistent and can interfere with your daily activities, says Dr Pantalone.

6. You’re noticing skin discoloration

Something that Dr. Pantalone often sees in patients before a diabetes diagnosis is dark skin in the neck folds and over the knuckles. Insulin resistance can cause this condition, known as acanthosis nigricans.

 

Thanks for reading

Ronny

I’m also active on Facebook. Like my page for even more news. I’m also building up this site here: Ronny Allan

Disclaimer

My Diagnosis and Treatment History

Most Popular Posts

Sign up for my twitter newsletter

Read my Cure Magazine contributions

Remember ….. in the war on Neuroendocrine Cancer, let’s not forget to win the battle for better quality of life!

wego-blog-2018-winner

Neuroendocrine Cancer – don’t let it be a Crisis

crisis

The word ‘crisis’ has a wide range of meanings and it’s well used in the media to catch the reader’s attention. Lately, the terms ‘political crisis’, financial ‘crisis’ and ‘constitutional crisis’ appear almost daily in media headlines. In a previous life, the term ‘crisis management’ was used daily in the work I was undertaking as I went from problem to problem, dampening or putting out fires (….. that’s a metaphor!).  Thinking back, my adrenaline (epinephrine), norepinephrine, and cortisol must have been very busy! 

However, in the world of Neuroendocrine Tumours (NETs), ‘crisis’ has a very significant meaning and its very mention will make ears prick up.  The word ‘crisis’ is normally spoken or written using the term ‘Carcinoid Crisis’ given this is the type of NET with which it has been mostly associated. However, I’ve studied and researched and it would appear that some form of ‘crisis’ might apply to other types of NETs. Perhaps this is another knock-on effect caused by the historical use of the word ‘Carcinoid’ to incorrectly refer to all NETs. In terms of ‘crisis’, maybe there should be a more generic NETs wide term?  Of course there should, once again ‘carcinoid’ is causing confusion.

What is (so called) ‘Carcinoid Crisis’?

In the simplest of terms, it is a dangerous change in blood pressure, heart rate, and breathing (technical term – cardiopulmonary hemodynamic instability).  On an operating table under anaesthetics or an invasive procedure such as liver embolization, this can actually be life threatening.  Incidentally, this happens with many other types of conditions (hormones and peptides do exist in other illnesses). However, with a patient already oversecreting these hormones and peptides, it could be a life or death situation.

What is the difference between carcinoid crisis and carcinoid syndrome?

Carcinoid crisis is said to be a situation where nearly all of the possible symptoms of carcinoid syndrome come at the same time and in some severity. Carcinoid crisis is a serious and life-threatening complication of carcinoid syndrome, and is generally found in people who already have carcinoid syndrome. The crisis may occur suddenly, or it can be associated with stress, a reaction to treatment, but it is mainly as a result of the use of anaesthesia. There is a thin line between a very severe bout of carcinoid syndrome and carcinoid crisis but generally it can be characterized by an abrupt flushing of face and sometimes upper body, usually severe falls in blood pressure and even bronchospasm with wheezing can infrequently occur. The attack may look like a severe allergic reaction.

It is said by one very well-known NET expert to “not to be something which happens randomly to all patients, it is usually linked to a medical procedure of some sort when you are having anaesthesia”.  Dr Eric Liu also said “Luckily it is relatively uncommon”.

Why does it happen to some NET Patients?

NETs can release a variety of ‘vasoactive peptides’ (hormones) in excess (e.g. serotonin, catecholamines, histamine).  Under normal circumstances, these would just present as routine syndromes which may need to be controlled in most cases with somatostatin analogue treatment (Octreotide/Lanreotide).

Excess amounts of these vasoactive substances can cause both hypertension and hypotension (high and low blood pressure respectively). In extreme cases this can lead to what is known as a crisis situation.

How is the risk managed?

Most people are effectively managed on monthly injections of Octreotide/Lanreotide but some people still need ‘rescue shots’ (top ups) where they are experiencing breakthrough symptoms.  When I was symptomatic (syndromic), I would regularly flush in stressful situations but that was definitely syndrome rather than crisis. Check out my video explaining how I felt.  It’s worth reading something called the 5 E’s of Carcinoid Syndrome, probably useful to other types of NETs as I’m sure there is some overlap.

If you research this plus perhaps from your own experience, you will know there are different ideas and ‘protocols’.  However, they all mostly involve some pre-procedure infusion of a somatostatin analogue (normally Octreotide) – although I’d love to hear from anyone who has had Lanreotide as an alternative.  Some doctors or hospitals are known to have their own ‘protocols’ and I’ve uploaded the one from the ISI NET book page 215 (Wang, Boudreaux, O’Dorisio, Vinik, Woltering, et al). Click here.  Please note this is an example rather than a recommendation as this is something the NOLA team have developed for their own centre.

In all the big procedures I’ve had done in my local NET Centre, I have always been admitted the day before to receive what they describe as an ‘Octreotide Soak’.  The link below is an example of the UK standard for pre and peri-operative protection (please note your NET team may be working to a slightly different protocol based on their own version of best practice, just to emphasise that this is an example and not advice).

Useful guidance from UKINETS – click here

Patients are always asking about the risk and requirements for smaller procedures such as an Endoscopy.  There does not seem to common guidance on this but Dr Woltering who is always forthcoming with advice suggests 200 micrograms of Octreotide before the procedure commences.

Dental visits involving anaesthetics can also be an issue and you can see Dr Woltering’s advice in my blog about the 5 Es of Carcinoid Syndrome.  Additionally there is advice for users of ‘Epi Pens’. You also need to derisk those situations.

What about other types of NETs

The ISI Book Link above (here for convenience), does stateregardless of tumor type, all NETs should be pre-treated with Octreotide for protection against crisis.  I know that NET patients other than those with ‘Carcinoid Tumours’ are also treated with somatostatin analogues, as they too can be subject to the effects of excess secretion of certain vasoactive peptides.

Why is the issue relative to Pheochromocytoma/Paraganglioma? 

Pheochromocytomas and paragangliomas are catecholamine-producing neoplasms that can cause life-threatening hemodynamic instability, particularly intraoperatively, when the tumor is manipulated.  In some ways their version of ‘crisis’ is more complex and dangerous than in the issues with carcinoid crisis above.  There needs to be significant pre-operative preparation in addition to peri-operative measures, in fact with this type of tumour, post surgical treatment and monitoring is also required.

I recently read an article about a person with a Pheochromocytoma. The person had what was described as an ‘Intraoperative Hypertensive Crisis‘ that appeared to be caused by her tumour type rather than the sort of incident that might occur in a standard surgery.  Hypertension (high blood pressure) can be a symptom of Pheochromocytoma so you can see the problem with surgery and other procedures. An interesting issue with this type of NET is that after surgery, the patient is at risk for hypotension (low blood pressure) from venous dilation caused by the sudden withdrawal of catecholamines. Read more here.

Summary

I highly suspect there are many examples from the NET world beyond the ‘carcinoid’ subtype of NETs and I’ve already given you one above.  I’ll update this blog as I discover other examples.  In the meantime, make sure you ask your medical team about ‘crisis protection’ if you are to undergo any surgical or invasive medical procedure. Minor procedures should also be assessed. 

Do we need to rename the term Carcinoid Crisis to Neuroendocrine Crisis?  Probably …… let’s give it a red card!

Thanks for reading

Ronny

I’m also active on Facebook.  Like my page for even more news.  I’m also building up this site here: Ronny Allan

Disclaimer

My Diagnosis and Treatment History

Most Popular Posts

Sign up for my twitter newsletter

Remember ….. in the war on Neuroendocrine Cancer, let’s not forget to win the battle for better quality of life!

patients included
This is a Patients Included Site

PLEASE CONSIDER SHARING THIS POST – YOU MAY SAVE SOMEONE’S LIFE

Neuroendocrine Cancer – tumour markers and hormone levels


blood tests

I think most people have had a form of medical testing at some point in their life, i.e. the sampling and testing of blood, urine, saliva, stool or body tissue. In a nutshell, the medical staff are just measuring the content of a ‘substance’ and then taking a view whether this is normal or not based on pre-determined ranges. These tests are normally done as a physician’s reaction to symptom presentation or maintenance/surveillance of an existing diagnosed condition. Sometimes, abnormal results will lead to more specialist tests.

In cancer, these tests are frequently called ‘markers’. Most tumour markers are made by normal cells as well as by cancer cells; however, they are produced at much higher levels in cancerous conditions. These substances can be found in the blood, urine, stool, tumour tissue, or other tissues or bodily fluids of some patients with cancer. Most tumour markers are proteins. However, more recently, patterns of gene expression and changes to DNA have also begun to be used as tumour markers.  Many different tumour markers have been characterized and are in clinical use. Some are associated with only one type of cancer, whereas others are associated with two or more cancer types. No “universal” tumour marker that can detect any type of cancer has been found.

markers

There are some limitations to the use of tumor markers. Sometimes, noncancerous conditions can cause the levels of certain tumor markers to increase. In addition, not everyone with a particular type of cancer will have a higher level of a tumour marker associated with that cancer. Moreover, tumour markers have not been identified for every type of cancer. Tumour markers are not foolproof and other tests and checks are usually needed to learn more about a possible cancer or recurrence.

I’d also like to talk about a group of associated tests, in particular, hormone levels as these tests are really important to help determine the type of Neuroendocrine Tumour.  NETs will sometimes oversecrete hormones and this can give clues to the type.  The constraints mentioned above apply to hormone levels and other tests to a certain extent.

What this article will not cover

Routine Testing – the post will not cover routine blood tests (i.e. complete blood count etc).  Although they may point to a problem, these tests do not necessarily indicate a particular type of NET without other supporting evidence.

Biopsy Testing – Technically, the Immunohistochemical ‘stains’ used in biopsy testing are tumour markers but I’ll not be discussing that today. I did cover the output of biopsies in my blog on NETs – Stages and Grades.

Genetic Testing.  This is very specialised but you may find my Genetics and NETs article is of interest.

Sequencing of marker testing – diagnosis

The sequencing of marker testing may have been different for many patients.  In my own experience, I had a biopsy and then the biochemical checks were carried out. So regardless of the results of my marker tests, I was to be diagnosed with NETs. Those with lengthy and difficult diagnostic phases will perhaps have had a different sequence with the biochemical markers providing evidence for further tests to formally diagnose.  Markers alone will normally not be enough for a diagnosis but they do, however, feed into the treatment plan and provide a baseline at diagnosis and for tracking going forward.

Interpreting test results – International/National/Regional differences

The use of markers tends to be different on an international basis, e.g. specific marker tests can be developed in-country by independent labs. Testing can also vary in the same country as in-country labs use different commercially available ‘testing kits’. Not all tests are available in all countries.

Reference ranges can be dependent on many factors, including patient age, gender, sample population, and test method, and numeric test results can have different meanings in different laboratories. The lab report containing your test results should include the relevant reference range for your test(s). Please consult your doctor or the laboratory that performed the tests to obtain the reference range if you do not have the lab report. Moreover, the ‘normal’ test range can vary from hospital to hospital, even within the same tests. I suspect clinical staff have their own versions of risk thresholds when dealing with test results. Even when results are just above or below, individual physicians can take their own view in a subjective manner. Testing is best done at the same lab each time if possible.

There’s a great website called LabTestsOnline which can describe each test. It’s peer-reviewed, non-commercial and patient-focused but just please note you should always refer to your own lab ‘normal ranges’ which will be printed on your test results.  For these reasons, you will not find reference ranges for the majority of tests described on this web site.  The link above will take you to the list of ‘country’ affiliated versions with specific information on a country basis.

Here’s some tips I always give people:

1 – Always try to get your own copy of results (preferably on paper) and track them yourself (I use a spreadsheet).

2 – When comparing results inside patient forums, always add the range and if possible, the unit of measurement (i.e. g/L, mmol/L, umol/L etc etc).  Failure to do this can at best confuse, and at worst frighten patients.  Compare apples with apples not with pears! (this is why it’s important to know the unit of measure and the reference range in addition to the figure).

3 – Don’t get too excited about rises if the test is still inside the normal range – normal is normal!

4 – Don’t get too excited about rises taking you just outside of normal range – your doctors are looking for bigger spikes.

5. Don’t get too excited about a single test result, your doctors are looking for trends, a single test result is not much to go on.

NET Markers

Although some routine blood markers (complete blood count etc) are useful in NETs, it’s pretty much impossible to cover these in any general detail.  I’m going to focus on tumor and hormone associated markers

There are many markers involved with NETs. Some do different jobs and some are just variants measuring the same thing (more or less efficiently). You may also see something called ‘gold standard’ in reference to NET Tumour markers. Although thinking is changing (more on this below) and can vary from country to country, it is generally accepted that Chromogranin A and 5HIAA are the gold standard markers for tumour bulk and tumour functionality respectively.  These gold standard tests may not be applicable to every type of NET, particularly 5HIAA. I’m also aware that US doctors are reducing the dependency on CgA and using Pancreastatin instead (although many are measuring both).

NETs are known to be heterogeneous in nature (i.e. consisting of or composed of dissimilar elements; not having a uniform quality throughout).  Whilst some markers can be used widely, it follows that there are many very specialist marker tests for individual types of NET.  I think this applies to 3 broad categories of NETs: Tumours known to potentially oversecrete Serotonin and and perhaps others (mainly midgut), Pancreatic NETs (or pNETs) secreting various hormones by type; and other less common types and/or syndromes which might be considered by some to be even more complex than the former two and in some cases there are big overlaps.

Another interesting thing about NET markers is that an undiagnosed patient may undergo several specialist tests to eliminate the many possibilities that are being presented as vague and common symptoms.  Sometimes this is necessary to eliminate or ‘home in’ on a tumour type or syndrome/hormone involved (it’s that jigsaw thing again!).

Markers too can be divided into broad categories, those measuring how much tumour is in your body and its growth potential and those measuring how functional (or not) those tumours are.  The latter can probably be expanded to measure/assess excess hormone secretion and syndromes.

The Anatomy

Certain tests can be anatomy related so to add context and to prevent big repetitive lists when using the terms ‘foregut’, ‘midgut’ and ‘hindgut’, you may find this graphic useful.

foregut midgut hindgut

Markers for measuring Tumour bulk or load/growth prediction

Chromogranin (plasma/blood test)

cgaChromogranin is an acidic protein released along with catecholamines from chromaffin cells and nerve terminals. This statement alone might explain why it is a good marker to use with NETs.  Depending on the test kit being used, you may see test results for Chromogranin A (CgA) and Chromogranin B (CgB) – the inclusion of CgB tends to be confined to Europe. There is also mention of Chromogranin C (CgC) in places but I’ve never heard of this being used in conjunction with NETs.

One of the disadvantages of CgA is that the results can be skewed by those taking Proton Pump Inhibitors (PPIs).  Many NET patients are taking PPIs to treat GERD (….and Zollinger-Ellison Syndrome). In the long-term, this has the result of increasing gastrin levels which can lead to an increase of CgA in the blood including for some months after discontinuing.  Opinions differ but many texts I found did suggest stopping PPIs for 2 weeks before the CgA blood test.  CgB is said not be as influenced by the use of PPI as CgA. In addition to the issue with PPIs, CgA levels may also be elevated in other illnesses including severe hypertension and renal insufficiency. CgB is also said to be more sensitive to Pheochromocytoma.

Elevated CgA is a constant and somewhat excitable discussion point on patient forums and not just because of the lack of unit of measurement use I discussed above. Some people get quite excited about a single test result.  I refer to Dr Woltering et al (ISI Book) where it clearly states that changes in CgA levels of more than 25% over baseline are considered significant and a trend in serial CgA levels over time has been proven to be a useful predictor of tumour growth (i.e. a single test result with an insignificant rise may not be important on its own).  Dr Woltering also gives good advice on marker tests when he says “normal is normal” (i.e. an increased result which is still in range is normal).

Here is a nice graphic explaining what else could be the cause of elevated CgA:

causes-of-cga-elevated

CgA appears to be a widely used tumour marker and is effective in most NETs (foregut, midgut and hindgut). It is also sensitive to Pheochromocytoma, particularly when correlated with a 131I-MIBG scan. Interestingly Chromogranin can also be used in the immunohistochemical staining of NET biopsy samples (along with other methods).

As for my own experience, my CgA was only elevated at diagnosis, remained elevated after intestinal surgery but returned to normal after liver surgery (indicating the effect of liver tumour bulk on results).  It also spiked out of range when some growth in a distant left axillary node was reported in Jan 2012.  Following a lymphadenectomy, it returned to normal again and has remained in range to this day.  It has been a good predictor of tumour bulk for me and I’m currently tested every 6 months.

Pancreastatin

In effect, this marker does the same job as CgA.  Interestingly, Pancreastatin is actually a fragment of the CgA molecule. There have been many studies (mainly in the US) indicating this is a more efficient marker than CgA, and not only because it is not influenced by the use of PPI.  It has also been suggested that it’s more sensitive than CgA and therefore capable of detecting early increases in tumour burden. It has also been suggested it can be an indication of tumour ‘activity’ (whatever that means). It is widely used in the US and some physicians will use it in preference to CgA (…..although from what I read, CgA also seems to be tested alongside).  I’m starting to see this mentioned in the UK.

Neurokinin A (NKA)

This is not a well publicised test. However, it is something used in USA but I’d like to hear from others to validate its use elsewhere.  In a nutshell, this test, which only applies to well differentiated midgut NETs, appears to have some prognostic indication.  I discovered this test in the ISI NET Guidance and it’s backed up by a study authored by names such as Woltering, O’Dorisio, Vinik, et al.  This is not a one-off test but one designed to be taken serially, i.e. a number of consecutive tests.  These authors believe that NKA can also aid in the early identification of patients with more aggressive tumors, allowing for better clinical management of these patients.  NKA is sometimes called Substance K.

Neuron-Specific Enolase (NSE)

In patients with suspected NET who have no clear elevations in the primary tumor markers used to diagnose these conditions, an elevated serum NSE level supports the clinical suspicion.

Markers for measuring Tumour functionality/hormone/peptide levels

So far, I’ve covered basic tumor markers which have a tumor bulk and/or prognostic indication.  This section is a slightly more complex area and many more tests are involved. There’s often a correlation between CgA/Pancreastatin and these type of markers in many patients i.e. a serial high level of CgA might indicate a high level of tumour bulk and therefore increased production of a hormone in patients with a syndrome or oversecreting tumor. However, it frequently does not work out like that, particularly when dealing with non-functioning tumours.

The type of marker for this element of NET diagnosis and surveillance will vary depending on the type of NET and its location (to a certain extent).  Like tumour bulk/growth, there might be different options or test variants on an international basis. There are too many to list here, so I’ll only cover the most common.

Serotonin Secreting Tumors

There are a few markers in use for measuring the functionality of this grouping of tumours. This tumour group has a tendency to secrete excess amounts of the hormone Serotonin although it differs depending on the area of the primary. For example, hindgut tumours tend to secret lower levels than foregut and midgut and therefore this test may present within range.  Please also note there may be other hormones of note involved. The antiquated and misleading term ‘Carcinoid’ is sometimes used as a descriptor for these tumours and more and more NET scientific organisations and specialists are now avoiding use of this term.

lug-the-jug
Lug the Jug

5HIAA.  5HIAA is a metabolite of Serotonin thus why it’s a useful thing to measure to assess functionality in this grouping of tumours. 5HIAA is actually the ‘gold standard’ test for functioning serotonin secreting tumours. It’s a key measure of the effects of carcinoid syndrome and the risk of succumbing to carcinoid heart disease.  However, there are two methods of testing:  Urine and Plasma.  The rather obvious key difference between the two is practicality. With the 24 hour urine, there are two key issues: 1.  The logistics (i.e. lug the jug).  2. Fasting for up to 3 days prior to the test (4 if you count the day of the test). There are numerous variations on the fasting theme but most labs tend to say not to eat at least the following foods that contain high levels of serotonin producing amines: avocados, bananas, chocolate, kiwi fruit, pineapple, plums, tomatoes, and walnuts.  Some lists contain additional items. With the plasma version, the fasting period is reduced to 8 hours (although I’ve seen some labs increase that to 10 or 12). There are also medicinal limitations including drugs that can also alter 5-HIAA urine values, such as acetanilide, phenacetin, glyceryl guaiacolate (found in many cough syrups), methocarbamol, and reserpine. Drugs that can decrease urinary 5-HIAA levels include heparin, isoniazid, levodopa, monoamine oxidase inhibitors, methenamine, methyldopa, phenothiazines, and tricyclic antidepressants. Patients should talk to their doctor before decreasing or discontinuing any medications. Taking 5HTP supplements are possibly not advised either prior to the test either.

As for my own experience, my 5HIAA (urine) was elevated at diagnosis only returning to normal after removal of my primary and commencement of Lanreotide. It has been a good measure of tumour functionality for me and I’m currently tested every 6 months.

Other tests for the tumour subgroup include but not limited to:

Serum Serotonin (5-HydroxyTryptamine; 5-HT).  Firstly let’s deconflict between 5HIAA above and the serotonin (5-HT) blood test.  5HIAA is a metabolite of serotonin but the serotonin test is a measure of pure serotonin in the blood.  Morning specimens are preferred and this is a fasting test (10-12 hours).  There is always debate on forums about Serum Serotonin results.  I have Dr Liu on record as saying “a high serotonin level measured in the blood in isolation really isn’t that dangerous. It’s the 5HIAA (a breakdown product of serotonin, which is easily measured in the blood and urine) that is considered to be more indicative of persistent elevated hormone. It’s this test that is most closely related to the carcinoid heart disease”.

Substance P.   A substance associated with foregut and midgut tumours.  It is a vasoactive protein that can cause wheezing, diarrhea, tachycardia, flushing

Histamines – Usually associated with foregut tumors. Appears to be involved in patchy rashes and flushing.  The advice in the ISI NET book is no anti-histamine medication to be taken for 48 hours prior to blood draw.

Gastric NETs (Stomach)

Testing will be different depending on the Type:

  • Type 1 – Typical Low Grade, tends to be caused by atrophic gastritis.
  • Type 2 – Atypical Intermediate Grade and tends to be caused by gastrin secreting tumours.  Type 2 normally needs a check for MEN1/Zollinger-Ellison Syndrome.
  • Type 3 – Tend to be larger and more aggressive tumours.

The key makers are CgA and Gastrin although Gastrin may not be elevated in Type 3. Gastrin ph is useful to differentiate between Type 1 and Type 2.  5HIAA can be considered but Carcinoid Syndrome is rare in Gastric NETs.

NETs of the Pancreas (pNETs)

pancreatic-cells
There are many different types of cells in the pancreas

pNETs can be very difficult to diagnose and not only because they share some presentational similarities to their exocrine counterparts.  Some pNETs actually comprise tumours arising in the upper part of the duodenum (small intestine) close to the Pancreas. Moreover, more than half of pNETs are non-functional which increases the difficulty in suspecting and then finding the tumours.  However, where there is clinical presentation or suspicion, these symptoms can lead to the appropriate testing to support the output of scans. The fasting gut profile mentioned above can be useful in identifying the offending hormones when the type of NET is not yet known.

Gut Hormones (Glucagon, Gastrin, VIP, Somatostatin, Pancreatic Polypeptide)

A gut hormone screen is used for the diagnosis of a variety of endocrine tumours of the pancreas area. Analysis includes gastrin, VIP, somatostatin, pancreatic polypeptide, and glucagon, but there may be others depending on processes used by your ordering specialist or hospital.

Notes:

1. You may see this referred to as a ‘Fasting Gut Profile’ or a ‘Fasting Gut Hormone Profile’.

2.  The individual hormones measured seem to differ between hospital labs.

3.  The fasting conditions also vary between hospitals and labs but all agree the conditions are critical to the most accurate results. Always ask for instructions if you’re offered this test.

The gastrin test is usually requested to help detect high levels of gastrin and stomach acid. It is used to help diagnose gastrin-producing tumours called gastrinomas, Zollinger-Ellison (ZE) syndrome, and hyperplasia of G-cells, specialised cells in the stomach that produce gastrin. It may be measured to screen for the presence of multiple endocrine neoplasia type I (MEN) It may be used if a person has abdominal pain, diarrhoea, and recurrent peptic ulcers. A gastrin test may also be requested to look for recurrence of disease following surgical removal of a gastrinoma.

Vasoactive intestinal peptide (VIP) measurement is required for diagnosis of pancreatic tumour or a ganglioneuroma which secretes VIP. Administration of VIP to animals causes hyperglycaemia, inhibition of gastric acid, secretion of pancreatic bicarbonate and of small intestinal juice, and a lowering of systemic blood pressure with skin flush. These features are seen in patients with a tumour of this type which is secreting VIP.

Glucagon is measured for preoperative diagnosis of a glucagon-producing tumour of the pancreas in patients with diabetes and a characteristic skin rash (necrolytic migratory erythema).

Pancreatic polypeptide (PP) production is most commonly associated with tumours producing vasoactive intestinal polypeptide and with carcinoid syndrome and, less commonly, with insulinomas and gastrinomas.

When secreted by endocrine tumours, somatostatin appears to produce symptoms similar to those seen on pharmacological administration, i.e. steatorrhoea, diabetes mellitus and gall stones.

There are several types of pNETs, each with their own syndrome or hormone issue.  When they are suspected due to the presentational symptoms, the markers that could be used are listed below.  These types of tumours are complex and can be related to one or more syndromes.  A patient may be tested using multiple markers to include or exclude these.  Depending on other factors, some physicians may recommend additional marker testing in addition to the most common types below.

Insulinoma – Insulin, Proinsulin, C-peptide

Gastrinoma– Gastrin, Gastrin pH

Glucagonoma – Glucagon, Insulin, Pancreatic Polypeptide (PP), Adrenocorticotropic hormone (ACTH)

VIPoma – Vasoactive Intestinal Polypeptide (VIP), Electrolytes (due to profuse diarrhea)

Somatostatinoma – Somatostatin (plasma somatostatin like immunoreactivity)

PPoma – Pancreatic Polypeptide (PP)

Other NETs/Syndromes

Pheochromocytoma/Paraganglioma – Adrenaline-producing tumours. Plasma and urine catecholamines, plasma free total metanephrines, urine total metanephrines, vanillylmandelic acid (VMA)

Medullary Thyroid Cancer. Medullary thyroid cancer (MTC) starts as a growth of abnormal cancer cells within the thyroid – the parafollicular C cells. In the hereditary form of medullary thyroid cancer (~20% of cases, often called Familial MTC or FMTC), the growth of these cells is due to a mutation in the RET gene which was inherited. This mutated gene may first produce a premalignant condition called C cell hyperplasia. The parafollicular C cells of the thyroid begin to have unregulated growth. In the inherited forms of medullary thyroid cancer, the growing C cells may form a bump or nodule in any portion of the thyroid gland.  Unlike papillary and follicular thyroid cancers, which arise from thyroid hormone-producing cells, medullary thyroid cancer originates in the parafollicular cells (also called C cells) of the thyroid. These cancer cells make a different hormone called calcitonin, which has nothing to do with the control of metabolism in the way  thyroid hormone does.  The other test often seen in MTC is Carcinoembryonic Antigen (CEA). CEA is a protein that is usually found in the blood at a very low level but might rise in certain cancers, such as medullary thyroid cancer. There is no direct relationship between serum calcitonin levels and extent of medullary thyroid cancer.  However, trending serum calcitonin and CEA levels can be a useful tool for doctors to consider in determining the pace of change of a patient’s medullary cancer.

[please note there are extremely rare occurrences of elevated calcitonin from places outside the thyroid – read more here.

Parathyroid– Parathyroid hormone (PTH), Serum Calcium.  Parathyroid hormone (PTH) is secreted from four parathyroid glands, which are small glands in the neck, located behind the thyroid gland. Parathyroid hormone regulates calcium levels in the blood, largely by increasing the levels when they are too low.  A primary problem in the parathyroid glands, producing too much parathyroid hormone causes raised calcium levels in the blood (hypercalcaemia – primary hyperparathyroidism). You may also be offered an additional test called Parathyroid Hormone-Related Peptide (PTHrP). They would probably also measure Serum Calcium in combination with these type of tests. The parathyroid is one of the ‘3 p’ locations often connected to Multiple Endocrine Neoplasia – MEN 1 – see MEN below.

Pituitary/Cushings – Adrenocorticotropic hormone (ACTH), Cortisol.

HPA AXIS – It’s important to note something called the HPA axis when discussing pituitary hormones as there is a natural and important connection and rhythm between the Hypothalamus, Pituitary and the Adrenal glands.

Adrenocorticotropic hormone (ACTH) is made in the corticotroph cells of the anterior pituitary gland. It’s production is stimulated by receiving corticotrophin releasing hormone (CRH) from the Hypothalamus. ACTH is secreted in several intermittent pulses during the day into the bloodstream and transported around the body. Like cortisol (see below), levels of ACTH are generally high in the morning when we wake up and fall throughout the day. This is called a diurnal rhythm. Once ACTH reaches the adrenal glands, it binds on to receptors causing the adrenal glands to secrete more cortisol, resulting in higher levels of cortisol in the blood. It also increases production of the chemical compounds that trigger an increase in other hormones such as adrenaline and noradrenaline. If too much is released, The effects of too much ACTH are mainly due to the increase in cortisol levels which result. Higher than normal levels of ACTH may be due to:

Cushing’s disease – this is the most common cause of increased ACTH. It is caused by a tumor in the pituitary gland (PitNET), which produces excess amounts of ACTH. (Please note, Cushing’s disease is just one of the numerous causes of Cushing’s syndrome). It is likely that a Cortisol test will also be ordered if Cushing’s is suspected.

Cortisol

This is a steroid hormone, one of the glucocorticoids, made in the cortex of the adrenal glands and then released into the blood, which transports it all round the body. Almost every cell contains receptors for cortisol and so cortisol can have lots of different actions depending on which sort of cells it is acting upon. These effects include controlling the body’s blood sugar levels and thus regulating metabolism acting as an anti-inflammatory, influencing memory formation, controlling salt and water balance, influencing blood pressure. Blood levels of cortisol vary dramatically, but generally are high in the morning when we wake up, and then fall throughout the day. This is called a diurnal rhythm. In people who work at night, this pattern is reversed, so the timing of cortisol release is clearly linked to daily activity patterns. In addition, in response to stress, extra cortisol is released to help the body to respond appropriately. Too much cortisol over a prolonged period of time can lead to Cushing’s syndrome.  Cortisol oversecretion can be associated with Adrenal Cortical Carcinoma (ACC) which can sometimes be grouped within the NET family.

Other hormones related to ACC include:

Androgens (e.g. Testosterone) – increased facial and body hair, particularly females. Deepened voice in females.

Estrogen – early signs of puberty in children, enlarged breast tissue in males.

Aldosterone – weight gain, high blood pressure.

Adrenal Insufficiency (Addison’s Disease) occurs when the adrenal glands do not produce enough of the hormone cortisol and in some cases, the hormone aldosterone. For this reason, the disease is sometimes called chronic adrenal insufficiency, or hypocortisolism.

A tumour outside the pituitary gland, producing ACTH (also called ectopic ACTH). With NETs, this is normally a pNET, Lung/Bronchial NET or Pheochromocytoma.

Multiple Endocrine Neoplasia (MEN).  Please note MEN is a group of distinct syndrome not a tumor.  Complex area and tends to be multiple instances of some of the tumours above.  For a breakdown of MEN types and locations, check out my MEN blog ‘Running in the Family’

Carcinoid Heart Disease(CHD) (Hedinger syndrome)  I’m not really talking directly about a tumour here but thought it would be useful to include a blood test called NT-proBNP.  I’ve left a link to my CHD article in the paragraph heading for those who wish to learn more about CHD in general.  For those not offered an annual Echocardiogram or are ‘non-syndromic’ there is a screening test that can give an indication of any heart issue which might then need further checks.

The Future – Molecular Markers?

This is testing using DNA and genes.  Exciting but complex – check out this article which involved some NETs.

Tumour Markers and Hormone levels – complex subject!

tt

Somatostatin Analogues and delivery methods in the pipeline

As most of you will be aware, there are currently two main types of Somatostatin Analogues (SSA) in use for the treatment of mainstream Neuroendocrine Tumours (NETs) – Octreotide and Lanreotide. You can click on the links for information on both of these well-known NET treatments. This post will focus on the not so well known and anything in the pipeline including different delivery systems.

This is my live blog post covering new developments in the area of new Somatostatin Analogues and new delivery systems. 

Abstract

As most of you will be aware, there are currently two main types of Somatostatin Analogues (SSA) in use for the treatment of mainstream Neuroendocrine Tumours (NETs) – Octreotide and Lanreotide.  You can click on the links for information on both of these well-known NET treatments.  This post will focus on the not so well known and anything in the pipeline including different delivery systems.

Those who have read the Octreotide/ Lanreotide patient leaflets will know those SSAs are also used in the treatment of a condition known as Acromegaly. You can see why the drug is used for both as they control the release of excess secretions of various substances, a problem that has an effect on both conditions. In the case of Acromegaly, the condition is typically caused by pituitary tumours that oversecrete the growth hormone leading to elevated levels of IGF-1. Like NETs, Octreotide/Lanreotide is currently the mainstay non-surgical treatment for this condition. For those not aware of Acromegaly there is a nice infographic explaining it here.   

Delivery methods discussed in this post include: a smaller, faster and easier Octreotide injection, an Octreotide capsule, an Octreotide nasal spray.  Other somatostatin analogues includes Pasireotide which has already been approved for Cushing’s Syndrome and Acromegaly (core NET possibilities have been investigated) and a new kid in the pipeline called Veldreotide for Acromegaly but potential additional applications in Cushing’s syndrome and neuroendocrine tumors. Finally for those with an interest in Cushings, a drug currently in phase 3 trials called RECORLEV™ (Levoketoconazole) which is not actually a somatostatin analogue, rather it’s a cortisol synthesis inhibitor.

It’s important to understand that NETs and other conditions including Cushings and Acromegaly, very often share the same hormone inhibiting drugs, thus why any development for these type of drugs is of interest to all physicians and patients in the associated conditions.

It’s also useful to understand that many of these drugs/delivery mechanisms are driven by availability of funding and are subject to the vagaries of the market. One entry on the previous version of this article has been removed as the company manufacturing it went into administration (Solid Dose Injections).

Somatostatin Analogues – New Delivery Methods in the Pipeline

Crinetics Pharmaceuticals Initiates Phase 1 Study of CRN01941 for the Treatment of Neuroendocrine Tumors

Updated 21 May 2019.  Click here to read about this exciting development.

 

New delivery system for Octreotide LAR – “Q-Octreotide” (MDT201)

757z468_1-SG02126-(1)
MTD201 (Q-Octreotide)

Updated 20 Dec 2018.

An unnamed ‘pharma giant’ has signed a deal with Midatech Pharma Plc that will see it evaluate the latter’s Q-Sphera drug delivery platform.  Only a guess from me, but I suspect it’s either Novartis or Ipsen.

Midatech’s Q-Sphera™ is an advanced microencapsulation and polymer-depot sustained release (SR) drug delivery platform produced using a novel and disruptive printing based process, with numerous and distinct advantages over conventional reactor based technologies. From a manufacturing perspective Q-Sphera™ is a precise, scalable, efficient, and environmentally friendly microparticle platform. From a clinical perspective Q-Sphera™ ensures monodispersed microparticles that release active drug compounds into the body in a superior linear tightly controlled and predictable manner over an extended period of time from 1 – 6 months.  An injection lasting 6 months sounds very exciting but I have no more detail on the feasibility or likelihood of such a change in frequency with Octreotide or Lanreotide but the press release does mention the possibility, i.e. “Q-Sphera allows drug compounds to be released into the body in a “highly controlled manner” over a prolonged period of time; potentially from a few days to up to six months.”

What’s the main differences?

The current trials are based on the use of Sandostatin LAR (Octreotide) using the Q-Sphera delivery system (previously known as Q-Octreotide). The key aspects of usability are reconstitution and needle size but there is also an inference that less frequent injections could be possible.

Apparently, the delivery method (see picture) is smaller, faster, easier with the possibility of less frequent injections. More to follow when known but in the meantime, please see a useful Video about Q-Octreotide. Apologies for the use of the out of date term ‘carcinoid‘.

New Octreotide Delivery Method – Chiasma Capsule

mycappsa
Octreotide Capsules? Graphic from http://www.chiasmapharma.com/

Updated 14 Dec 2017. Acromegaly appears to be in the lead in terms of new delivery methods.  A pharma company called Chiasma is working on an oral version of Octreotide for this condition and they are currently at Phase 3 trials.   You can check out the technology here.

Clearly, we want drugs to be safe and the announcement is another reminder of why drugs take so long to be approved.  Chiasma’s investigational oral octreotide uses their proprietary TPE® (Transient Permeability Enhancer) technology to facilitate gastrointestinal absorption of the unmodified drug into the bloodstream safely (i.e. it keeps the drug safe until it reaches its destination).  Hopefully, the new trial can convince the FDA to finally approve.  The trial is currently only Acromegaly based and details are here.

This is potentially an exciting development given that both conditions use the same drugs (Octreotide and Lanreotide injections) so there is always the hope that NETs might be next in line if the capsule version is finally approved.  However, still very early days as the company does not anticipate the release of top line date from the Phase 3 trial until 2020. 

Intranasal administration of Octreotide Acetate 

intravail
Nasal Spray Octreotide?

Updated 14 May 2017.  Dauntless Pharmaceuticals, Inc., a privately held biopharmaceutical company focused on the development of specialty therapeutics, announced the outcome of a Phase 1 clinical study to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of DP1038, a novel formulation of octreotide acetate for intranasal administration, compared to subcutaneous Sandostatin® (octreotide acetate) injection in healthy volunteers.  DP1038 (octreotide acetate for intranasal administration) is being developed via the 505(b)(2) regulatory pathway for the treatment of acromegaly and neuroendocrine tumors.  DP1038 leverages patented technology for enhanced intranasal absorption developed by Aegis Therapeutics, LLC, a drug delivery and drug formulation company that has successfully licensed its technology to leading pharmaceutical and biopharmaceutical companies whose partners have multiple late stage clinical programs under development. The drug will most likely use an administration system patented by Aegis called Intravail® Aegis Therapeutics LLC announced last year that it has been awarded U.S. Patent No. 9,446,134 providing non-invasive metered nasal spray delivery of Octreotide (click here to view the announcement). The enabling Aegis Intravail formulation technology is broadly applicable to a wide range of small molecule and biotherapeutic drugs to increase non-invasive bioavailability by the oral, nasal, buccal, and sublingual routes and to speed attainment of therapeutic drug levels in cases where a non-invasive (i.e., non-injectable) form of the drug is unavailable or where speed of onset is important.  A description of Intravail delivery systems can be found by clicking here.

About the Phase 1 Trial
The Phase 1 trial was designed to assess the safety, tolerability, pharmacokinetics and pharmacodynamics of DP1038, a novel formulation of octreotide acetate for intranasal administration, compared to subcutaneous Sandostatin® (octreotide acetate) Injection in healthy volunteers. In Part 1 of the study, each of 12 subjects received three doses of DP1038 plus 100 micrograms of subcutaneous octreotide acetate in a randomized 4 x 4 Latin square design. DP1038 was well tolerated across all doses and demonstrated a consistent, dose-proportional pharmacokinetic profile with significant nasal bioavailability. In Part 2 of the study, a single dose of DP1038, which was selected to exhibit a similar pharmacokinetic profile to subcutaneous octreotide acetate, was evaluated in 20 subjects in a cross-over design to compare the pharmacodynamic effect to 100 micrograms of subcutaneous octreotide acetate. Subjects were given a GHRH-arginine challenge, a standard test to stimulate growth hormone release, followed by administration of DP1038 or subcutaneous octreotide acetate. DP1038 showed comparable growth hormone suppression to the subcutaneous reference product. The news announcing the output from the Phase 1 clinical trial can be found by clicking here. Clearly, this is very early days and the product would need to go through the normal drug approval and acceptance routes etc.  However, a Phase 1 trial using patients is very exciting.

New Somatostatin Analogues in the Pipeline

New Somatostatin AnaloguePasireotide

signiforlar-22

Updated 14 Dec 2017.  Not really new but I wanted to include it because it’s not very well-known. Pasireotide is also known as Signifor and SOM230.  This drug is already in the pipeline but only for Acromegaly and Cushing’s Syndrome.  I found it interesting that is able to function as a multireceptor-targeted SSA by binding with high affinity to 4 of the 5 somatostatin receptors (sstrs 1, 2, 3 and 5), with the highest affinity for sstr5, resulting in inhibition of adrenocorticotropic hormone (ACTH) secretion (Octreotide only binds to sstrs 2, 3 and 5). In fact, Signifor represents the first specific treatment for ACTH-secreting pituitary adenomas.  Moreover, it is the first approved medical treatment for Cushing’s disease.  If you’ve read my blog on NET Syndromes, you will see the connection – both involve pituitary tumours and this drug is designed to cater for scenarios where surgery has not solved the problem or is not an option. Interestingly Novartis describes it as a second generation SSA, inferring that Octreotide is first generation.  It comes in short and long acting (LAR) forms with a similar delivery system to Octreotide. It is a US FDA approved orphan drug and is also approved for use in the EU.  Novartis has also submitted additional regulatory applications for Signifor LAR worldwide.   You can read more by clicking here

However, there have been studies in its use for advanced NETs where Octreotide is not working or has not sufficiently controlled the effects of the syndrome.  You can read a full text article about the study results by clicking here (you will recognise some of the authors including Edward M Wolin, Christos Toumpanakis, John Ramage, Kjell Öberg).  My interpretation of the trial conclusion is that there does not appear to be any significant advantages of Pasireotide over Octreotide.  The attachment also confirmed studies are ongoing including a potential combination treatment of Pasireotide and Everolimus (Afinitor).  There does not appear to be a study comparing it to Lanreotide.

Jonathan R. Strosberg, MD, associate professor at H. Lee Moffitt Cancer Center, discussed pasireotide as a potential treatment for patients with neuroendocrine tumors (NETs). He said “Pasireotide is a somatostatin analog similar to octreotide (Sandostatin) and lanreotide (Somatuline). However, pasireotide targets 4 out of the 5 somatostatin receptor subtypes, which may provide it with an advantage over the other 3 agents. Thus far, there has not been enough evidence showing that pasireotide has a progression-free survival benefit over the other 2 therapies. It is also associated with hyperglycemia. Pasireotide may be an appropriate choice for patients in later lines of therapy. In the future, he envisions that patients could be selected for therapy based on their somatostatin receptor profile.”

New Somatostatin Analogue  – Veldoreotide (COR-005)

Updated 14 Dec 2017. There is another new drug in the pipeline currently known as Veldoreotide or COR-005 (although I can see the term ‘Somatoprim’ used on other searches). COR-005 is an investigational SSA in phase 2 development for treatment of patients with Acromegaly. Although the page on the manufacturer’s website does not mention NETs, an announcement of its progress has just been made at the Endocrine Society’s annual conference for 2016. The announcement states that the drug has “potential additional applications in Cushing’s syndrome and neuroendocrine tumors”.  COR-005 targets somatostatin receptors 2, 4 and 5. Read about the drug here.

COR-005 has received orphan drug designation (only for Acromegaly) in the US and EU. There is not enough data to understand how this might benefit NETs and what the differences would be.  Hopefully, an update will be available later which will result in an update to this post.

For those interested in Cushing’s Syndrome, (hypercortisolism or high levels of cortisol), the same manufacturer working on Veldoreotide is also working on a new drug in Phase 3 trials known as RECORLEV™ (Levoketoconazole). Not actually a somatostatin analogue, rather it’s a cortisol synthesis inhibitor

Summary

This information is provided for information only.  There is no intent to indicate at this point that these new drugs will eventually be approved for NETs.  However, it’s another indication that people are working on new treatments which might end up being available at some stage.

The pipeline for new treatments and methods of delivery continues to grow!

Thanks for reading

Ronny

I’m also active on Facebook.  Like my page for even more news.  I’m also building up this site here: Ronny Allan

Disclaimer

My Diagnosis and Treatment History

Most Popular Posts

Sign up for my twitter newsletter

Remember ….. in the war on Neuroendocrine Cancer, let’s not forget to win the battle for better quality of life!

patients included

Please Share this post: