Neuroendocrine Neoplasms – High grade



High Grade – the forgotten patient group?

When reading articles in the mainstream media, found in medical publications; and even listening to doctors speak about my disease, it’s clear that the focus is on the term “Neuroendocrine Tumours” or NET for short.  Many websites of advocate foundation organisations and specialist scientific organisations, all still use the term “NET” in their naming.  I too am guilty of having a large Facebook site falling into this category.  It’s little wonder that those with high grade disease can often feel like the forgotten patient group.  Clearly all the aforementioned organisations support all patients regardless of grade, but it’s true to say that the naming and general use of terminology continues to fall behind. It’s also true that the term NET remains applicable to the majority of patients and that many use it as a convenience when they actually mean all types including Neuroendocrine Carcinoma. Nonetheless, context remains an important part of overall understanding and inclusivity – words and acronyms matter.

However, High grade or Grade 3 is no longer just Neuroendocrine Carcinoma (NEC).  Things have changed since 2017.

What are Neuroendocrine Neoplasms?

Neuroendocrine neoplasms (NENs) are without doubt a heterogeneous (i.e. diverse) bunch of tumours with a common phenotype (i.e. the physical appearance or biochemical characteristic).  However, there are two fundamentally different groups of NENs: well-differentiated, low-proliferating NENs, called neuroendocrine tumours (NETs), and poorly differentiated, highly proliferating NENs, called neuroendocrine carcinomas (NECs).  The difference between well and poorly differentiated has been described as a ‘dichotomy’, most likely due to the origin from different neuroendocrine progenitor cells (i.e. source cells). Should the term Neuroendocrine Neoplasm be used more?  Yes, probably. But should we perhaps also ask if ENETS and NANETS will change their names to ENENS and NANENS?

This revised classification is not recent as many are currently suggesting.  These changes were covered in my Staging and Grading article produced in early 2017 and confirmed Neuroendocrine Neoplasms (or NENs) was the overarching term for all types of neuroendocrine disease.  See graphic below.

Traditionally, any proliferation score over 20% on the Ki-67 proliferation index (or over 20 mitoses/10 HPF on the Mitotic Index) would have been deemed a Neuroendocrine Carcinoma.  However, in the pancreas, NETs and NECs may overlap in their proliferation index, making the distinction between them difficult and leading to treatment uncertainties.

In 2017, the Endocrine ‘Blue Book’ of cancer classification systems introduced a new pancreatic NET category based on a Grade 3 tumour which is well differentiated (i.e. cancer cells look more like normal cells and tend to grow and spread more slowly).  While all classifications for all NENs recognise the existence of the two major groups (NET and NEC), there are proposals to develop common NEN classification across all the ‘Blue Books’ and future versions will reflect these changes. The most interesting change will be in the Lung classification because high grade NENs can be small cell or large cell and it’s probably the most controversial grouping.

Interestingly, ENETS guidelines already use the term across the board in their 2016 series (i.e. in advance of the 2017 changes).  These changes are part influenced by the results of the NORDIC NEC study which showed that although patients with a Ki67 <55% were less responsive to platinum-based chemotherapy (i.e. drug names ending in ‘platin’ such as Cisplatin, Carboplatin, Oxaliplatin), they had a longer survival, and concluded that not all NEC should be considered as one single disease entity.  Also worth noting that the NORDIC NEC study covered many different areas of the anatomy, not just the pancreas. Some of the rationale for the division of grade 3 into well differentiated NETs and poorly differentiated carcinomas is that some grade 3 tumours which are classified into this category according to the Ki67 index percentage, have been recognised to behave more like grade 2 NETs rather than aggressive carcinomas. The inference is that there could be treatment and prognostic significance if a patient is a Grade 3 NET.

MANEC vs MiNEN

Added for completeness.  This mixed and rare neoplasm type has traditionally been related to NEC but in 2017 the nomenclature change to a new term was necessary to reflect the fact that some of the tumours involved were not carcinomas or adenocarcinomas but rather were well differentiated tumours or even adenomas (i.e. benign). Previously known as Mixed AdenoNeuroendocrine Carcinoma (MANEC), they were renamed to Mixed Neuroendocrine Non-Neuroendocrine Neoplasms (MiNEN).

MiNEN are neoplasms with two distinct neuroendocrine and non-neuroendocrine cell populations. They can be morphologically classified into three entities: collision, composite, and amphicrine MiNEN. Currently, both components composing a MiNEN must represent at least 30% of the whole tumour.  Diagnosis of MiNEN is usually facilitated by the presence of at least one well-differentiated component which may be the Neuroendocrine or Non-Neuroendocrine component. However, the two components may be difficult to identify with conventional morphological techniques, particularly when they are poorly differentiated, and their identification may require additional immunohistochemical techniques. MiNEN usually originate from organs that contain neuroendocrine cells and in which “classical” NENs are known to develop, such as pancreas, appendix, colon, and to a lesser degree small intestine. Other locations in my source document includes Oesophagus, Stomach, Bilary Tract and Gallbladder, Duodenum and Ampulla of Vater and Rectum.

NEC vs NET

Having researched widely, I believe there are 8 key differences between NET and NEC:

      1. Grade – NEC is only Grade 3, NETs can be Grade 1, 2 or 3.
      2. Differentiation – all NETs are well differentiated, NECs are poorly differentiated.  Important difference at Grade 3.
      3. Aggressiveness – Most NETs tend to be indolent or slow growing while NECs tend to be aggressive and faster growing. However, Ki67 and/or mitotic count is an aggressiveness measurement tool.  Genetic profiles can also be a guide but this is beyond the purposes of this article but may be explored in subsequent parts.  It follows that NECs normally have a worse prognosis in comparison to NETs.
      4. Hormone Secretion – NETs can produce peptide hormones that may be associated with hormonal syndromes.  NECs usually fail to express hormones or produce hormonal syndromes.
      5. Somatostatin Receptors – A NET is much more likely to express somatostatin receptors which can influence treatments such as somatostatin analogues and peptide receptor radiotherapy (PRRT)
      6. Hereditary Syndromes – NETs are much more likely to be associated with hereditary syndromes such as Multiple Endocrine Neoplasia (MEN).
      7. Platinum Based Chemotherapy – NETs are less likely to show a good response to platinum based chemotherapy which can often be the first line treatment for NEC.
      8. Primary Locations – can be vastly different in terms of commonality and therefore provide clues to investigators. Common locations for NEC include: Lung, Esophagus, Colon, Urogential Organs and Skin –  with the exception of Lung, these are very rare locations in NETs.  Conversely, rare/very rare locations for NEC but common in NET include: Rectal, Small Intestine, Appendix, Stomach, Pancreas.

Summary

I intend to cover more on Grade 3 tumours going forward and a ‘Part 2’ article will follow covering treatment differences, genetic profiles and unmet needs.

In addition to my own knowledge gained over the years of researching and writing, the following resources were key in establishing the facts used in compiling this article:

1. Sorbye H, Welin S, Langer SW, Vestermark LW, Holt N, Osterlund P, et al: Predictive and prognostic factors for treatment and survival
in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study. Ann Oncol 2013; 24: 152–160

2. de Mestier L, Cros J, Neuzillet C, Hentic O, Egal A, Muller N, Bouché O, Cadiot G, Ruszniewski P, Couvelard A, Hammel P: Digestive System Mixed Neuroendocrine-Non-Neuroendocrine Neoplasms. Neuroendocrinology 2017;105:412-425. doi: 10.1159/000475527

3. Koppel G: Neuroendocrine Neoplasms: Dichotomy, Origin and Classifications. Visc Med 2017;33:324-330. doi: 10.1159/000481390

4. Rindi G, Klimstra DS, Abedi-Ardekani B, et al. A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Mod Pathol. 2018;31(12):1770–1786. doi:10.1038/s41379-018-0110-y

Thanks for reading

Ronny

I’m also active on Facebook. Like my page for even more news. I’m also building up this site here: Ronny Allan

Disclaimer

My Diagnosis and Treatment History

Most Popular Posts

Sign up for my twitter newsletter

Read my Cure Magazine contributions

Remember ….. in the war on Neuroendocrine Cancer, let’s not forget to win the battle for better quality of life!

Ronny Allan is an award winning patient leader and advocate for Neuroendocrine Cancer.

 

ASCO 2017 – Let’s talk about NETs #ASCO17

ASCO (American Society of Clinical Oncology) is one of the biggest cancer conferences in the world normally bringing together more than 30,000 oncology professionals from around the world to discuss state-of-the-art treatment modalities, new therapies, and ongoing controversies in the field.  As Neuroendorine Tumors is on a roll in terms of new treatments and continued research, we appear to be well represented with over 20 ‘extracts’ submitted for review and display.  This is fairly complex stuff but much of it will be familiar to many.  I’ve filtered and extracted all the Neuroendocrine stuff into one list providing you with an easy to peruse table of contents, complete with relevant linkages if you need to read more.  For many the extract title and conclusion will be sufficiently educational or at least prompt you to click the link to investigate further.  Remember, these are extracts so do not contain all the details of the research or study. However, some are linked to bigger trials and linkages are shown where relevant.  I’ve also linked to some of my blog posts to add context and detail.

I’m hoping to capture any presentations or other output from the meeting which appears to be relevant and this will follow after the meeting.  I will also be actively tweeting any output from the live event (for many cancers, not just NETs).

There’s something for everyone here – I hope it’s useful.

68Ga-DOTATATE PET/CT to predict response to peptide receptor radionuclide therapy (PRRT) in neuroendocrine tumours (NETs).  

Conclusions: Objective response to PRRT defines a subset of patients with markedly improved PFS. SUVave 21.6 defines a threshold below which patients have a poor response to PRRT. This threshold should be taken forward into prospective study.

Check out my recent blog discussing ‘Theranostic pairing” – click here

Rohini Sharma 4093
A multicohort phase II study of durvalumab plus tremelimumab for the treatment of patients (PTS) with advanced neuroendocrine neoplasms (NENs) of gastroenteropancreatic (GEP) or lung origin (the DUNE trial-GETNE1601-).

News of a trial – no conclusion included.  However, see trial data NCT03095274

Ignacio Matos Garcia TPS4146
Association between duration of somatostatin analogs (SSAs) use and quality of life in patients with carcinoid syndrome in the United States based on the FACT-G instrument.

Conclusions: The duration of SSA use was positively associated with QoL benefit among CS patients. This may be explained by long-term effectiveness of SSAs or selection bias favoring patients with more indolent disease. Future studies will be needed to distinguish between these possibilities.

Daniel M. Halperin e15693
Association of weight change with telotristat ethyl in the treatment of carcinoid syndrome.

Conclusions: The incidence of weight gain was dose-related on TE and was greater than that on pbo. It was possibly related to a reduction in diarrhea severity, and it may be a relevant aspect of TE efficacy among patients with functioning metastatic NETs. Clinical trial information: NCT01677910

See my blog post Telotristat Ethyl

Martin O Weickert e15692
Blood measurements of neuroendocrine tumor (NET) transcripts and gene cluster analysis to predict efficacy of peptide radioreceptor therapy.

Conclusions: A pre-PRRT analysis of circulating NET genes, the predictive quotient index comprising “omic” analysis and grading, is validated to predict the efficacy of PRRT therapy in GEP and lung NETs.

Lisa Bodei 4091
Capecitabine and temozolomide (CAPTEM) in neuroendocrine tumor of unknown primary.

Conclusions: CAPTEM shows activity in neuroendocrine tumor of unknown primary. Currently FDA approved treatment options for grade I and grade II GI NETs includes somatostatin analogs and everolimus. Both of which are cytostatic and of limited use in case of visceral crisis or bulky disease where disease shrinkage is required. CAPTEM should be considered for grade II NETS of unknown primary.

Aman Chauhan e15691
Clinical and epidemiological features in 495 gastroenteropancreatic neuroendocrine patients in Mexico.

Conclusions: This is the first multi-center study in Mexico. Which reflects the clinical characteristics of the NET_GET. The results differ in their epidemiology from that reported in other countries. However, the clinical and therapeutic results are very similar.

Rafael Medrano Guzman e15687
Effect of lanreotide depot (LAN) on 5-hydroxyindoleacetic acid (5HIAA) and chromogranin A (CgA) in gastroenteropancreatic neuroendocrine (GEP NET) tumors: Correlation with tumor response and progression-free survival (PFS) from the phase III CLARINET study.

Conclusions: These data suggest that serotonin is secreted by nonfunctioning tumors, but does not reach the threshold required for clinical carcinoid symptoms. Monitoring 5HIAA and CgA may be useful during LAN treatment of nonfunctional GEP NETs. Clinical trial information: NCT00353496

Alexandria T. Phan 4095
Final progression-free survival (PFS) analyses for lanreotide autogel/depot 120 mg in metastatic enteropancreatic neuroendocrine tumors (NETs): The CLARINET extension study.

Conclusions: CLARINET OLE suggests sustained antitumor effects with LAN 120 mg in enteropancreatic NETs irrespective of tumor origin, and suggests benefits with LAN as early treatment. Clinical trial information: NCT00842348

Edward M. Wolin 4089
Lanreotide depot (LAN) for symptomatic control of carcinoid syndrome (CS) in neuroendocrine tumor (NET) patients previously responsive to octreotide (OCT): Subanalysis of patient-reported symptoms from the phase III elect study.

Conclusions: Pts showed improvement in CS symptoms of flushing and diarrhea and reduction in 5HIAA levels with LAN treatment, indicating efficacy of LAN regardless of prior OCT use. Transition from OCT to LAN was well tolerated among prior OCT pts in ELECT. Clinical trial information: NCT00774930

Check out my blog post about Lanreotide and Lanreotide vs Octreotide

George A. Fisher 4088
Molecular classification of neuroendocrine tumors: Clinical experience with the 92-gene assay in >24,000 cases.

Conclusions: These findings highlight the utility of molecular classification to identify distinct NET tumor types/subtypes to improve diagnostic precision and treatment decision-making. In addition, significant differences in the distribution of molecular diagnoses of NET subtype by age and gender were identified.

Andrew Eugene Hendifar e15700
Multi-omic molecular profiling of pancreatic neuroendocrine tumors.

Conclusions: In PNETS, multi-omic profiling through the KYT program identified targetable alterations in several key pathways. Outcome data will be explored.

Rishi Patel e15685
Outcomes of peptide receptor radionuclide therapy (PRRT) in metastatic grade 3 neuroendocrine tumors (NETs).

Conclusions: In this poor prognosis G3 NET cohort of whom 77% had received prior chemotherapy, a median OS of 18 months from start of PRRT is encouraging and warrants further study. PRRT is a promising treatment option for patients with G3 NET with high somatostatin-receptor expression selected by SSRI.

Mei Sim Lung e15694
Periprocedural management of patients undergoing liver resection or liver-directed therapy for neuroendocrine tumor metastases.

Conclusions: Occurrence of documented carcinoid crisis was low in this high-risk population. However, a significant proportion of patients developed hemodynamic instability, suggesting that carcinoid crisis is a spectrum diagnosis and may be clinically under-recognized. Use of octreotide was not associated with risk of carcinoid crisis or hemodynamic instability; however, this analysis was limited by our modest sample size at a single institution. There remains a need to establish an objective definition of carcinoid crisis and to inform standardization of periprocedural use of octreotide for at-risk patients.

See my blog on “Carcinoid Crisis” 

Daniel Kwon e15689
Predictive factors of carcinoid syndrome among patients with gastrointestinal neuroendocrine tumors (GI NETs).

Conclusions: By assessing patients with GI NET from two independent US claim databases, this study suggested that patients diagnosed with CS were 2-3 times more likely to be diagnosed with liver disorder, enlargement of lymph nodes, or abdominal mass, than those without CS during the one year prior to CS diagnosis. Future studies using patient medical charts are warranted to validate and interpret the findings. These findings, when validated, may aid physicians to diagnose CS patients earlier.

Beilei Cai e15690
Predictors of outcome in patients treated with peptide radio-labelled receptor target therapy (PRRT).

Conclusions: Radiological progression within 12 months of completion of PRRT is associated with a worse outcome in terms of OS. Patients with greater liver involvement and highest CgA levels are more likely to progress within 12 months of treatment completion. Earlier treatment with PRRT in patients with radiological progression not meeting RECIST criteria may need to be considered. There may be a greater survival benefit if PRRT is given prior to the development of large volume disease.

Dalvinder Mandair 4090
Pre-existing symptoms, resource utilization, and healthcare costs prior to diagnosis of neuroendocrine tumors: A SEER-Medicare database study.

Conclusions: To the best of our knowledge, this is the first population-based study to examine potentially relevant pre-existing symptoms, resource utilization and healthcare costs before NET diagnosis. NET patients were more likely to have certain conditions and incurred higher resource utilizations and costs in the year preceding diagnosis of NET.

Chan Shen 4092
Prevalence of co-morbidities in elderly patients with distant stage neuroendocrine tumors.

Conclusions: This population-based study showed that elderly NET pts have significantly different prevalence of co-morbidities compared to non-cancer controls. The impact of these conditions on survival and therapeutic decisions is being evaluated.

A. Dasari e15699
Prognostic factors influencing survival in small bowel neuroendocrine tumors with liver metastasis.

Conclusions: In patients with SBNET with liver metastasis, higher tumor grade and post-operative chemotherapy increased risk of death. However, resection of the primary tumor along with liver metastasis improves the 5-year OS with complete cytoreduction providing the most benefit.

Nicholas Manguso e15688
Role of 92 gene cancer classifier assay in neuroendocrine tumor of unknown primary.

Role of 92 gene cancer classifier assay in neuroendocrine tumor of unknown primary. | 2017 ASCO Annual Meeting Abstracts

Conclusions: Tissue type ID was able to identify a primary site in NETs of unknown primary in majority (94.7%) of cases. The result had direct implication in management of patients with regards to FDA approved treatment options in 13/38 patients (pNETs, merkel cell and pheochromocytoma).

Aman Chauhan e15696
Surgery in combination with peptide receptor radionuclide therapy is effective in metastatic neuroendocrine tumors and is definable by blood gene transcript analysis.

Conclusions: Radical loco-regional surgery for primary tumours combined with PRRT provides a novel, highly efficacious approach in metastasised NET. The NETest accurately measures the effectiveness of treatment.

Andreja Frilling e15697
The impact of pathologic differentiation (well/ poorly) and the degree of Ki-67 index in patients with metastatic WHO grade 3 GEP-NECs.

Conclusions: Grade 3 GEP-NECs could be morphologically classified into well and poorly differentiated NETs. Additionally, among grade 3 GEP-NECs, there was a significant difference in ranges of Ki67 index between well and poorly differentiated NECs. Higher levels ( > 60%) of Ki67 index might be a predictive marker for efficacy of EP as a standard regimen in grade 3 GEP-NECs.

Check out my blog post on Grading which has incorporated latest thinking in revised grade 3 classification

Seung Tae Kim e15686
Theranostic trial of well differentiated neuroendocrine tumors (NETs) with somatostatin antagonists 68Ga-OPS202 and 177Lu-OPS201.

Conclusions: In this trial of heavily treated NETs, preliminary data are promising for the use of 68Ga-OPS202/177Lu-OPS201 as a theranostic combination for imaging and therapy. Additional studies are planned to determine an optimal therapeutic dose and schedule. Clinical trial information: NCT02609737

Diane Lauren Reidy 4094
Use of antiresorptive therapy (ART) and skeletal-related events (SREs) in patients with bone metastases of neuroendocrine neoplasms (NEN).

Conclusions: SREs in NEN patients with BM were not uncommon, especially in patients with grade 3 NEN and osteolytic metastases. Application of ART did not significantly alter median OS or TTSRE, no subgroup with a benefit of ART could be identified. The use of ART in NEN should be questioned and evaluated prospectively.

Leonidas Apostolidis 4096
Targeted radiopeptide therapy Re188-P2045 to treat neuroendocrine lung cancer

Conclusions: Rhenium Re 188 P2045, a radiolabeled somatostatin analog, may be used to both identify and treat lung cancer tumors. The ability to image and dose patients with the same targeted molecule enables a personalized medicine approach and this highly targeted patient therapy may significantly improve treatment of tumors that over express somatostatin receptor.

Christopher Peter Adams, Wasif M. Saif e20016

Thanks for reading

Ronny
Hey, I’m also active on Facebook.  Like my page for even more news.
community_titled_transparent_2013-10-22

Recent Progress in NET Management – Positive presentation from Jonathan R Strosberg MD

jonathan-strosbergI recently wrote a blog called Neuroendocrine Cancer – Exciting Times Ahead! I wrote that on a day I was feeling particularly positive and at the time, I wanted to share that positivity with you. I genuinely believe there’s a lot of great things happening. Don’t get me wrong, there’s a lot still to be done, particularly in the area of diagnosis and quality of life after being diagnosed. However, this is a really great message from a well-known NET expert.

In an interview with OncLive, Jonathan R. Strosberg, MD, associate professor at the H. Lee Moffitt Cancer Center in Florida, discussed his presentation on NETs at a recent 2016 Symposium, and shed light on the progress that has been made in this treatment landscape.

OncLive: Please highlight some of the main points from your presentation.

Strosberg: The question I was asked to address is whether we’re making progress in the management of NETs, and I think the answer is unequivocally yes. Prior to 2009, there were no positive published phase III trials.

Since then, there have been 8 trials, 7 of which have reached their primary endpoints. So it’s been a decade of significant improvement. And even though none of these studies were powered to look at overall survival as an endpoint, we’re certainly seeing evidence of improvement in outcomes.

OncLive: What are some of the pivotal agents that you feel have impacted the paradigm in the past several years?

Strosberg: The first group is the somatostatin analogs. We use them to control hormonal symptoms like carcinoid syndrome, but with the CLARINET study, we now know that they substantially inhibit tumor growth.

The next significant drug we use in this disease is everolimus (Afinitor), an oral mTOR inhibitor, which is now approved in several indications based on positive phase III studies. The first was in pancreatic NETs and subsequently, based on the RADIANT-4 trial, it was also approved in lung and gastrointestinal NETs. So that was an important advance.

The next important category of treatment is radiolabeled somatostatin analogs, otherwise known as peptide receptor radiotherapy. The one that’s been tested in a phase III trial is lutetium dotatate, also known as Lutathera. It was tested in patients with progressive midgut NETs and showed a very substantial 79% improvement in progression-free survival, and a very strong trend toward improvement in overall survival, which we hope will be confirmed upon final analysis.

OncLive: Are we getting better at diagnosing and managing the treatment of NETs?

Strosberg: Certainly. I think pathologists are better at making the diagnosis of a NET, rather than just calling a cancer pancreatic cancer or colorectal cancer. They’re recognizing the neuroendocrine aspects of the disease, and doing the appropriate immunohistochemical staining.

We also have better diagnostic tools. We used to rely primarily on octreoscan, and in many cases we still do, but there is a new diagnostic scan called Gallium-68 dotatate scan, also known as Netspot, which has substantially improved sensitivity and specificity. It’s not yet widely available, but it is FDA approved and hopefully will enable better diagnosis as well as staging in the coming years.

And, with the increase in number of phase III studies, we’re developing evidence-based guidelines, which will hopefully lead to more standardization, although knowing how to sequence these new drugs is still quite challenging.

OncLive: With sequencing, what are the main questions that we’re still trying to answer?

Strosberg: If we take, for example, NETs of the midgut, beyond first-line somatostatin analogs, physicians and patients often face decisions regarding where to proceed next, and for some patients with liver-dominant disease, liver-directed therapies are still an option.

For others, everolimus is a systemic option, and then hopefully lutetium dotatate will be an option based on approval of the drug, which is currently pending. Knowing how to choose among those 3 options is going to be a challenge, and I think there will be debates. Hopefully, clinical trials that compare one agent to another can help doctors make that choice. It’s even more complicated for pancreatic NETs. Beyond somatostatin analogs, we have about 5 choices—we have everolimus, sunitinib (Sutent), cytotoxic chemotherapy, liver-directed therapy, and peptide receptor radiotherapy. It’s even more challenging in that area.

OncLive: Are there any other ongoing clinical trials with some of these agents that you’re particularly excited about?

Strosberg: There’s a trial that is slated to take place in Europe which will compare lutetium dotatate with everolimus in advanced pancreatic NETs, and I think that’s going to be a very important trial that will help us get some information on both sequencing of these drugs, as well as the efficacy of Lutathera in the pancreatic NET population, based on well-run prospective clinical trials. I’m particularly looking forward to that trial.

OncLive: Looking to the future, what are some of the immediate challenges you hope to tackle with NETs?

Strosberg: One area of particular need is poorly differentiated neuroendocrine carcinomas. That’s a field that’s traditionally been understudied. There have been very few prospective clinical trials looking at this particular population, and we’re hoping that will change in the near future. There are a number of trials taking place looking at immunotherapy drugs. If these agents work anywhere in the neuroendocrine sphere, they are more likely to work in poorly differentiated or high-grade tumors, in my opinion, given the mutational profile of these cancers. So that’s something I’m particularly looking forward to being able to offer these patients something other than the cisplatin/etoposide combination that goes back decades, and is of short-lasting duration.

See more at: http://www.onclive.com/publications/oncology-live/2016/vol-17-no-24/expert-discusses-recent-progress-in-net-management#sthash.ypkilX2A.dpuf

Thanks for reading

Ronny

Hey Guys, I’m also active on Facebook.  Like my page for even more news.

Disclaimer

My Diagnosis and Treatment History

Most Popular Posts

Sign up for my twitter newsletter

community_titled_transparent_2013-10-22

Neuroendocrine Tumor Drug Clinical Trial – Cabozantinib (includes news on Pheochromoctyoma and Paraganglioma)

What is Cabozantinib?

Cabozantinib is an oral drug which works by blocking the growth of new blood vessels that feed a tumour. In addition to blocking the formation of new blood cells in tumours, Cabozantinib also blocks pathways that may be responsible for allowing cancers cells to become resistant to other “anti-angiogenic” drugs. It is a type of drug called a growth blocker.  Cabozantinib has been studied or is already in research studies as a possible treatment for various types of cancer, including prostate cancer, ovarian cancer, brain cancer, thyroid cancer, lung cancer, and kidney cancer. During my research, I found that it has a connection to Medullary Thyroid Cancer (MTC) which is a type of Neuroendocrine Cancer, frequently associated with Multiple Endocrine Neoplasia (MEN).  Cabozantinib, under the brand name of ‘Cometriq’ was approved by the FDA in 2012 for use in MTC.  Read more about Cometriq here.  It’s also been approved by the FDA for advanced renal cell carcinoma (RCC) (branded as Cabometyx). I also discovered that there is an exclusive licensing Agreement with the manufacturers (Elelixis) and Ipsen (of Lanreotide fame) to commercialize and develop Cabozantinib in regions outside the United States, Canada and Japan

Growth blockers are a type of biological therapy and include tyrosine kinase inhibitors, proteasome inhibitors, mTOR inhibitors, PI3K inhibitors, histone deacetylase inhibitors and hedgehog pathway blockers.  Cabozantinib is a tyrosine kinase inhibitor (TKI).  They block chemical messengers (enzymes) called tyrosine kinases.  Tyrosine kinases help to send growth signals in cells so blocking them stop the cell growing and dividing.  Some TKIs can block more than one tyrosine kinase and these are known as multi-TKIs.

cabozantinib-picture
Example action of Cabozantinib

So Capozantinib is a tyrosine kinase inhibitor and is therefore a biological therapy and growth blocker just like Everolimus (Afinitor) and Sunitinib (Sutent) – some texts describe thelattero two as chemotherapy but this is just not accurate.

Very technical process but in the simplest of terms, Cabozantinib is designed to disrupt the actions of VEGF (a growth factor) and MET (a growth factor receptor) which promote spread of cancerous cells through the growth of new blood vessels.  Whilst we are on this subject, please note Everolimus (Afinitor) is an mTOR inhibitor and Sunitinib (Sutent) is a tyrosine kinase inhibitor. Many people think these drugs are a type of chemo – that is incorrect, these are targeted biological therapies.  See more on this by clicking here.

What is the current trial status of Capozantinib?

A Phase III trial is now recruiting entitled Cabozantinib S-malate in Treating Patients With Neuroendocrine Tumors Previously Treated With Everolimus That Are Locally Advanced, Metastatic, or Cannot Be Removed by Surgery”. 

The trial has 172 locations across the US (see link below). The primary study (final data) is scheduled Jan 1st 2021.

You can read the trial documentation by clicking here.

Progress report

  1. Poster submission for 2017 Gastrointestinal Cancer Symposium
  2. Onc Live output from the 2017 Gastrointestinal Cancer Symposium
  3. Output from NANETS 2017
  4. A funded piece of research by the NET Research Foundation – check it out herelooks like they are trying to figure out what patients might benefit from Cabozantinib using biomarker data to predict response.
  5. Dr Jennifer Chan speaking in 2018 about the drug potential.  (Apologies for the use of the out of date term ‘Carcinoid‘).
  6. Phase 3 Clinical Trial Document – click here

————————-

UPDATED 2018 – There’s also another trial looking at unresectable metastatic Pheochromocytomas and Paragangliomas

A Phase 2 Study to Evaluate the Effects of Cabozantinib in Patients with Unresectable Metastatic Pheochromocytomas and Paragangliomas 

This part is from an article collaboration between MedPage Today® and the American Association of Clinical Endocrinologists

BOSTON — Cabozantinib (Cabometyx) may benefit patients with malignant pheochromocytomas and paragangliomas, according to results of a phase II trial presented here.

Patients receiving cabozantinib (Cometriq) treatment experienced notable tumor shrinkage in the lymph nodes, liver, and lung metastases, according to Camilo Jimenez, MD, of the MD Anderson Cancer Center in Houston, and colleagues.

Additionally, progression-free survival significantly increased after treated to 12.1 months (range 0.9-28) compared with just 3.2 months prior to treatment, they reported at the American Association of Clinical Endocrinologists (AACE) annual meeting.

Cabozantinib treatment was also tied to an improvement in blood pressure and performance status, as well as remission of diabetes among these patients.

“Malignant pheochromocytomas and paragangliomas are frequently characterized by an excessive secretion of catecholamines. [Patients] have a large tumor burden and they have a decreased overall survival,” explained Jimenez. “Tumors are frequently very vascular and frequently associated with bone metastases. In fact, up to 20% of patients who have malignancy of pheochromocytomas and paragangliomas may have predominant bone metastases.”

He added that “an interesting aspect of this tumor is that C-MET receptor mutation have been found in occasional patients with malignant pheochromocytomas and paragangliomas.”

Cabozantinib is an anti-angiogenic tyrosine kinase inhibitor, which also targets RET, MET, and AXL. It is approved for metastatic medullary thyroid cancer, and was more recently approved for first-line treatment of advanced renal cell carcinoma.

“MET pathway is also involved in the development of bone metastases. In fact, cabozantinib is a very effective medications for patients who have bone metastases in the context of cancer of different origins,” Jimenez said.

In order to be eligible for the trial, patients with confirmed pheochromocytoma or paraganglioma had to be ineligible for curative surgery, have ≥3 months life expectancy, no risk for perforation or fistula, and adequate organ functioning. Prior to cabozantinib initiation, patients could not receive chemotherapy or biologic agents within 6 weeks, radiation within 4 weeks, or MIBG within 6 months.

Following histological confirmation of disease progression >1 year according to RECIST 1.1, the trial included 14 patients with measurable disease and eight patients with predominant/exclusive bone metastases. Fifteen patients subsequently enrolled into the trial, six of whom had germline mutations of the SDHB gene.

All participants were all started at an initial daily dose of 60 mg of cabozantinib, which was subsequently reduced down to between 40 to 20 mg due to toxicity in 13 patients based on tolerance.

The majority of these patients with measurable disease experienced some level of disease response. Six patients reported a partial response, defined as over a 30% reduction, while three patients achieved moderate response, marked by a 15%-30% reduction. Five of the patients with predominant bone metastases reported disease stabilization, according to results of an FDG-PET scan. One patient experienced disease progression while on treatment.

Overall, cabozantinib was generally well-tolerated without any grade 4 or 5 treatment-related adverse events reported. Some of the most common adverse events reported included grade mild dysgeusia, hand and foot syndrome, mucositis, fatigue, weight loss, and hypertension, according to the authors.

  • Primary Source – American Association of Clinical Endocrinologists meeting – AACE 2018; Abstract 142. attended my Medscape writers

You can see the Pheo/Para clinical trial document by clicking here.

————————————–

Summary

I generated this blog article to add value rather than just post the outputs for your own perusal.  I hope you find it useful.

Please note that taking part in a clinical trial is a big decision and must be considered carefully in conjunction with your specialists if necessary.  This article is not suggesting this trial is right for you.  Please check the inclusion and exclusion criteria in the trials document carefully. (Pheo/Para patients see other clinical trial link above)

Neuroendocrine Neoplasms (NEN) – benign vs malignant

Kunz His belief these tumors did not metastisize

OPINION:

One of the most controversial aspects of Neuroendocrine Neoplasms, in particular low grade Neuroendocrine Tumours (NETs), is the ‘benign vs malignant’ question.  It’s been widely debated and it frequently patrols the various patient forums and other social media platforms. It raises emotions and it triggers many responses ….. at least from those willing to engage in the conversation. At best, this issue can cause confusion, at worst, it might contradict what new patients have been told by their physicians (….or not been told). I don’t believe it’s an exact science and can be challenging for a NET specialist let alone a doctor who is not familiar with the disease.

NANETS Guidance talks about the ‘…heterogeneous clinical presentations and varying degrees of aggressiveness‘ and ‘…there are many aspects to the treatment of neuroendocrine tumours that remain unclear and controversial‘.  I’m sure the ‘benign vs malignant’ issue plays a part in these statements.

In another example, ENETS Guidance discusses (e.g.) Small Intestine Tumours (Si-NETs) stating that they ‘derive from serotonin-producing enterochromaffin cells. The biology of these tumors is different from other NENs of the digestive tract, characterized by a low proliferation rate [the vast majority are grade 1 (G1) and G2], they are often indolent’.  However, they then go on to say that ‘Si-NETs are often discovered at an advanced disease stage – regional disease (36%) and distant metastasis (48%) are present‘.  It follows that the term ‘indolent‘ does not mean they are not dangerous and can be ignored and written off as ‘benign’. This presents a huge challenge to physicians when deciding whether to cut or not to cut.

Definitions

To fully understand this issue, I studied some basic (but very widely accepted) definitions of cancer.  I also need to bring the ‘C’ word into the equation (Carcinoid), because the history of these tumours is frequently where a lot of the confusion lies.  The use of the out of date term by both patients, patient advocates and doctors exacerbates the issue given that it decodes to ‘carcinoma like‘ which infers it is not a proper cancer.  See more below.

Let’s look at these definitions provided by the National Cancer Institute.  Please note I could have selected a number of organisations but in general, they all tend to agree with these definitions give or take a few words. These definitions help with understanding as there can be an associated ‘tumour’ vs ‘cancer’ debate too.

Cancer – Cancer is the name given to a collection of related diseases. In all types of cancer, some of the body’s cells begin to divide without stopping and spread into surrounding tissues. There are more than 100 types of cancer which are usually named for the organs or tissues where the cancers form.  However, they also may be described by the type of cell that formed them.

Author’s note: The last sentence is important for Neuroendocrine Tumour awareness (i.e. Neuroendocrine Tumour of the Pancreas rather than Pancreatic Cancer).

Carcinoma – Carcinomas are the most common grouping of cancer types. They are formed by epithelial cells, which are the cells that cover the inside and outside surfaces of the body. There are many types of epithelial cells, which often have a column-like shape when viewed under a microscope.

Author’s note: By definition, Carcinomas are malignant, i.e. they are without question malignant cancers. Poorly differentiated Neuroendocrine Neoplasms are deemed to be a ‘Neuroendocrine Carcinoma’ according to the most recent World Health Organisation (WHO) classification of Neuroendocrine Tumours (2017) and ENETS 2016 Guidance. You will have heard of some of the types of Carcinoma such as ‘Adenocarcinoma’ (incidentally, the term ‘Adeno’ simply means ‘gland’). It follows that Grade 3 Neuroendocrine Carcinomas (NEC) are beyond the scope of this discussion.

Malignant – Cancerous. Malignant cells can invade and destroy nearby tissue and spread to other parts of the body.

Benign – Not cancerous. Benign tumors may grow larger but do not spread to other parts of the body.

Author’s Note: This is a key definition because there are people out there who think that low grade NETs are not cancer. 

Tumour (Tumor) – An abnormal mass of tissue that results when cells divide more than they should or do not die when they should. Tumors may be benign (not cancerous), or malignant (cancerous). Also called Neoplasm.

Author’s Note: Neoplasm is an interesting term as this is what is frequently used by ENETS and NANETS in their technical documentation, sometimes to cover all Neuroendocrine types of cancer (Tumor and Carcinoma). It follows that a malignant tumour is Cancer. The term “Malignant Neuroendocrine Tumour” is the same as saying “Neuroendocrine Cancer”

Neuroendocrine Tumours – Benign or Malignant?

Definitions out of the way, I have studied the ENETSUKINETS and NANETS guidance both of which are based on internationally recognised classification schemes (i.e. the World Health Organisation (WHO)).

In older versions of the WHO classification schemes (1980 and 2000), the words ‘benign’ and ‘uncertain behaviour’ were used for Grades 1 and 2. However, the 2010 edition, the classification is fundamentally different (as is the recent 2017 publication).  Firstly, it separated out grade and stage for the first time (stage would now be covered by internationally accepted staging systems such as TNM – Tumour, (Lymph) Nodes, Metastasis). Additionally, and this is key to the benign vs malignant discussion, the WHO 2010 classification is based on the concept that all NETs have malignant potential.  Here’s a quote from the UKINETS 2011 Guidelines (Ramage, Caplin, Meyer, Grossman, et al).

Tumours should be classified according to the WHO 2010 classification (Bosman FT, Carneiro F, Hruban RH, et al. WHO Classification of Tumours of the Digestive System. Lyon: IARC, 2010). This classification is fundamentally different from the WHO 2000 classification scheme, as it no longer combines stage related information with the two-tiered system of well and poorly differentiated NETs. The WHO 2010 classification is based on the concept that all NETs have malignant potential, and has therefore abandoned the division into benign and malignant NETs and tumours of uncertain malignant potential.

The guidance in 2017 WHO reinforces this statement to include endocrine organs, including the pancreas and adrenal glands.

The C Word (Carcinoid) – part of the problem?

History lesson – Carcinoid tumours were first identified as a specific, distinct type of growth in the mid-1800’s, and the name “karzinoide” was first applied in 1907 by German pathlogist Siegfried Oberndorfer in Europe in an attempt to designate these tumors as midway between carcinomas (cancers) and adenomas (benign tumors).

The word ‘Carcinoid’ originates from the term ‘Carcinoma-like’.  ‘CARCIN’ is a truncation of Carcinoma. ‘OID’ is a suffix used in medical parlance meaning ‘resembling’ or ‘like’.  This is why many people think that Carcinoid is not a proper cancer.

The situation is made even more confusing by those who use the term “Carcinoid and Neuroendocrine Tumors” inferring that it is a separate disease from the widely accepted and correct term ‘Neuroendocrine Tumor’ or Neuroendocrine Neoplasm.  A separate discussion on this subject can be found in this post here. I encourage you to stop using the term ‘Carcinoid’ which is just perpetuating the problem. 

Kunz His belief these tumors did not metastisize

How are NENs Classified?

If you read any NET support website it will normally begin by stating that Neuroendocrine Tumours constitute a heterogeneous group of tumours. This means they are a wide-ranging group of different types of tumours.  However, the latest WHO classification scheme uses the terms ‘Neuroendocrine Tumour’ for well differentiated Grade 1 (low-grade), Grade 2 (Intermediate Grade) and Grade 3 (High Grade) NET; and ‘Neuroendocrine Carcinoma’ (NEC) for  poorly differentiated tumours which are by default grade 3 or high grade. They also use the term ‘Neoplasm’ to encompass all types of NET and NEC. So Grade 1 is a low-grade malignancy and so on (i.e any grade of NET is a malignant tumour).  You may benefit from reading my blog article on Staging and Grading of NETs as this is also a poorly understood area.

Can some NETs be Benign?

By any accepted definition of cancer terms, a tumour can be non-cancerous (benign) or cancerous (malignant).  This is correct for any cancer type. For example, the word is used in the 2016 version of Inter Science Institute publication on Neuroendocrine Tumors, a document I frequently reference in my blog.  For example, I’ve seen statements such as “These tumors are most commonly benign (90%)” in relation to Insulinoma (a type of Pancreatic NET or pNET). Ditto for Pheochromocytoma (an adrenal gland NET).  Adrenal and Pituitary ‘adenomas’ are by definition benign (adenoma is the benign version of Adenocarcinoma).  And I note that there is a ‘benign’ code option for every single NET listed in the WHO International Classification of Diseases (ICD) system.

The ‘BUT‘ is this – all WHO classification systems are based on the concept that NETs always have malignant potential.  The WHO 2017 classification update confirmed this thinking by adding endocrine organs including the pancreas and adrenal glands.

don't worry it's benign widescreen

Can Tumours be Malignant or become Malignant?

Using the definition above, if a tumour invades and destroy nearby tissue and spread to other parts of the body, then it’s malignant (i.e  Cancer). However, there’s a reason why the WHO declared in 2010 that all NETs have malignant potential (as amplified in WHO 2017). It may not happen or it may happen slowly over time but as Dr Richard Warner says, “they don’t all fulfill their malignant potential, but they all have that possible outcome”.  Thus why ongoing surveillance is important after any diagnosis of Neuroendocrine Tumour of any grade or at any stage.  Dr Lowell Anthony, a NET Specialist from the University of Kentucky explains this much better than I can – CLICK HERE to hear his two-minute video clip.  This issue even caused confusion with doctors, some of whom still think a Stage 4 NET is still benign. Not only is this very insensitive to the patient concerned but it also goes against all the definitions of ‘benign’ and ‘malignant’ that exist in authoritative texts.

Summary

This was a difficult piece of research. I do believe there are scenarios where NETs will be benign and probably never cause the person any real harm (e.g. many are found on autopsies). I  suspect this is the same for many cancers. However, based on the above text and the stories of people who have presented for a second time but with metastatic disease, use of the word ‘benign’ is probably best used with great care.

I would certainly (at least) raise an eyebrow if someone said to anyone with any NET tumour, “you don’t need any treatment or surveillance for a NET”; or “it has been cured and no further treatment or surveillance is required”.  Particularly if they are not a NET specialist or a recognised NET Centre.

Remember, I’m not a medical professional, so if you are in any doubt as to the status of your NET, you should discuss this directly with your specialist.  A good place to start is evidence of your Grade, Differentiation, Primary Site Location and Stage.

You may be interested in reading these associated posts:

Carcinoid vs Neuroendocrine

Neuroendocrine Neoplasms – Grading and Staging (WHO 2017)

Incurable vs Terminal

10 Questions for your doctor

Thanks for reading

Ronny

I’m also active on Facebook. Like my page for even more news. I’m also building up this site here: Ronny Allan

Disclaimer

My Diagnosis and Treatment History

Most Popular Posts

Sign up for my twitter newsletter

Read my Cure Magazine contributions

Remember ….. in the war on Neuroendocrine Cancer, let’s not forget to win the battle for better quality of life!

Ronny Allan is an award winning patient leader and advocate for Neuroendocrine Cancer.


patients included
Please Share this post for Neuroendocrine Cancer awareness and to help another patient

 

Neuroendocrine Neoplasms – Grade and Stage (incorporating WHO 2017 changes)

Grades of Neuroendocrine Tumour

One of the most discussed and sometimes confusing subjects on forums is the staging and grading of Neuroendocrine Neoplasms (NENs). Mixing them up is a common error and so it’s important to understand the difference despite the apparent complexity. If I was to make a list of questions for my specialist/Oncologist at diagnosis, it would include “What is the stage, grade and differentiation of my cancer”.  To enable me to synchronise with the documented guidance, I’m going to use the following WHO 2017 approved terms in this post:

  • Neuroendocrine Neoplasm (NEN) – all types of Neuroendocrine tumour of whatever grade (please note Neoplasm is another word for tumour)
  • Neuroendocrine Tumour (NET) – all well-differentiated tumours (an explanation of differentiation will be provided below)
  • Neuroendocrine Carcinoma (NEC) – all poorly differentiated tumours

NEN Breakdown

Stage vs Grade

In the most basic of terms, stage is the spread or extent of cancer and grade is the aggressiveness of cancer. They are totally different things and an understanding of both is important as they are critical to predict outcome (to a certain extent) and guide therapy. There is no correlation between the two, you can have the lowest grade with the highest stage (actually very common with NETs).

As patients, we deal with many medical specialists during diagnosis and subsequent treatment.  However, we rarely meet the pathologist who plays a critical role in the outcome. Precise diagnosis is what drives patient decisions and treatment. If the pathology is wrong, everything that follows could be incorrect as well.  It’s a very important area.

Grading (aggressiveness)

Grading and Ki67

Antigen KI-67 is a nuclear protein that is associated with and may be necessary for cellular proliferation.  Ki-67 is therefore an excellent marker to determine the growth fraction of a given cell population. The fraction of Ki-67-positive tumour cells (the Ki-67 labeling index) is often correlated with the clinical course of cancer.

Pathologists normally need to count about a thousand cells in order to determine the percentage of cells that are Ki67 positive – thus why you see Ki67 expressed as a percentage. 0% is the lowest, 100% is the highest. Often, they add greater or less than signs depending on the sample involved, i.e. >5% or <5%. There are other measurement systems in place, mainly Mitotic Count.

The ranges for Neuroendocrine Neoplasms (NENs) are divided in to 3 Grades depending what range the Ki67 number lands in. With NENs, the differentiation (well or poorly) is almost as important at grade 3 (high grade).  Grades 1 and 2 are by default well differentiated NETs).

Why is differentiation important?

To fully understand grading, you also need to understand the concept of ‘differentiation’.  In the most basic of terms, ‘differentiation’ refers to the extent to which the cancerous cells resemble their non-cancerous counterparts.  This is an important point for NETs because many low-grade tumour cells can look very similar to normal cells. The differentiation of a NET has an impact on both prognostics and treatment regimes.

NENs fall into one of three grades based on their differentiation and their proliferative rate. The proliferative rate is measured mainly using two methods known as Miotic Count and Ki-67 index, the latter seems to be more frequently used (but see below for Lung NETs). The Ki-67 index can usually be determined, even in cases of small biopsies but Mitotic rate counting requires a moderate amount of tumour tissue (at least 50 HPFs or 10 mm) and may not be feasible for small biopsies.  The Miotic Count method may be preferred or used in addition to Ki-67 for certain Lung NET scenarios as it is said to be more helpful in distinguishing atypical from typical NET (what some might ‘old fashionably’ and incorrectly refer to as Lung Carcinoid tumours), and for small and large cell lung Neuroendocrine Carcinomas (NEC).

Some of you may have heard the term ‘moderately differentiated’ which tended to align with an intermediate grade or Grade 2. However, please note that the term moderately differentiated as a classification was phased out in 2010 by WHO reducing from 3 differentiation levels to 2.  Grade 2 is also defined as well differentiated but based on different proliferative rate (see table). High grade was normally referred to as Neuroendocrine Carcinoma indicating it is a faster growing and more aggressive cancer. However, see below for an important change to high grade classification.

Grading – Key WHO 2017 Changes

WHO Classifications of Cancer are published in something known in medical world as “The Blue Book”.  For NETs, the 2017 version comprises only the “WHO Classification of Tumours of Endocrine Organs”.  Technically this would preclude the digestive system and lung NETs but the leading NET pathologists have submitted a recommendation to normalise all NET Blue Books along the same classification scheme.  Worth also noting that the latest ENETS Guidelines are already using the new grading terms.  Many sites remain out of date so be careful where you look.

Misc Grading Issues

The proliferative rate can be diverse in NENs, so sampling issues can limit the accuracy of grading. More substantial samples of tumour are therefore preferable for grading thus why the Ki-67 index is preferred for biopsies where large amounts of tissue may not be available. The distinction of low-grade from intermediate grade can be challenging when using small samples. A couple of interesting observations about NET grading which I spotted during my research and ‘forum watching’.  You can have multiple primary tumours and these might have different Ki-67 scores.  Additionally, on larger tumours, Ki-67 scores can be different on different parts of the tumour.  And something I know from my own experience, secondary tumours can have different Ki-67 scores than primary – even a different grade.  In my own case, my liver secondary tumours were graded higher than my primary which according to my surgeon is in keeping with a clone of the disease having become more aggressive over time.  Royal Free Hospital NET Centre indicates a person’s grade should be taken from the highest biopsy grade taken. This is a fairly complex area but a recent study published by the US National Institute of Health and many anecdotal comments made by NET specialists indicates that is a fairly common scenario.

 

Summary of Key Changes

The 2017 World Health Organisation (WHO) classification sub-divided Grade 3 into two new entities: a well differentiated high-grade NET and a poorly differentiated high-grade NEC.  There may also be a cut-off point in proliferative rate (i.e. Ki-67) between NET and NEC in relation to potential treatment strategies (55% is mentioned for pNETs but I’m currently investigating). Physicians don’t really have much data to support specific guidelines for treatment so all cases will be personalised.

The Grade 1 to 2 Ki-67 cut-off is changed from 2 to < 3 for clarification purposes.  There was some discussion as to whether it should be <5 but this was not accepted.

Well differentiated High Grade NETs are now recognised.  These are known as a NET rather than a NEC.  Both Grade 3 (NET) and Grade 3 (NEC) have the same biopsy marker cut-offs as per the leading slide but it is thought that a threshold reading of 55% could have some influence on the treatment regime. For example, a well differentiated tumour with a Ki67 of less than 55% might benefit from the same treatment given to Grade 1 or 2 patients, whereas a well differentiated tumour with a Ki67 of more than 55% might benefit from the same treatment given to poorly differentiated NEC. Only a guideline and I suspect this is like many things in NENs, very individual, relies on many factors, so your specialist will drive this accordingly.  You may see these 2 grades listed as Grade 3a for NET and Grade 3b for NEC.

Previously, Pheochromocytoma did not have an official grading regime, i.e. they were just benign or malignant.  Now they are using the same grading system as above.  I’m assuming this is the same for Paraganglioma and I will confirm in due course.  This is an excellent change and a continuation from the WHO 2010 classification where there was great emphasis away from a benign/malignant classification to formal grade levels on the basis that all NETs have malignant potential.

It also introduced a change to the naming of mixed cell tumours from Mixed AdenoNeuroendocrine Carcinoma (MANEC) to Mixed Neuroendocrine Non-Neuroendocrine Neoplasms (MiNEN).  A full explanation of MiNEN will follow but I would suggest the use of the term ‘Neoplasm’ has been chosen rather than ‘Carcinoma’ is because these neoplasms can be well or poorly differentiated.

It’s not possible at this time to acquire copies of the official output but I will keep this blog live.

The source material for the 2017 version of this article.

From leading Pathologist Dr Anthony Gill – Remember this is based on Endocrine Organs only but it will eventually apply to all.   I am awaiting access to free documentation to update this article further – only ones I can currently find are not free!

 

Staging (spread)

Staging is the extent or spread of disease.  Most types of cancer have 4 stages, numbered from 1 to 4 indicating a rising spread as the number is bigger. Often doctors write the stage down in Roman numerals, perhaps this is to stop any confusion between standard numbers used for Grades? So you may see stages written as I, II, III and IV.  In addition to this standard method, there is also an agreed model known as TNM (Primary Tumour, Regional Node, Distant Metastasis) which is essentially a more detailed staging definition when combined with the Stage 1-4 model.  Please note with TNM models, there could be different stage descriptions depending on the location of the primary tumour and similarly different TNM models for different tumour locations.

WHO 2017 changes

WHO 2017 has recommended enhancements to the TNM system mainly the use of additional suffixes indicating the extent of lymph node involvement. Details to follow when I can free access.

The following example shows the stage descriptions for a NET of the small intestine (the others are similar but worded accordingly for that part of the anatomy):

Stage I tumour is less than 1 cm in size and has not spread to the lymph nodes or other parts of the body.

Stage II tumour is greater than 1 cm in size and has started to spread beyond the original location, but has not spread to the lymph nodes or other parts of the body.

Stage III is any size tumour that has spread to nearby areas of the body and also to at least one lymph node.

Stage IV is any size tumour that has spread to one or more lymph nodes and has also spread to other, more distant areas of the body (such as the liver).

It’s also worth pointing out that Stage IV does not necessarily mean a cancer is more dangerous than other cancers of lesser stages.  This is an important point for NETs where Stage 4 can be matched up with a low-grade tumour i.e. Stage 4 for lower grade NETs is very often not the ‘red flag’ it is for other more aggressive cancers.  For example, doctors may surgically remove a Stage IV NET, while surgery might not help a patient with a cancer of a higher grade at such a late stage.

Notes:

  • Sometimes doctors use the letters to further divide the number categories – for example, stage 2A or stage 3B.  This is normally to clarify or provide more detail of the primary tumour size/invasion in conjunction with the TNM model.
  • You may also see something called Stage 0 which is for ‘Carcinoma in situ’. It means that there is a group of abnormal cells in an area of the body. However, the number of abnormal cells is too small to form a tumour and may, therefore, be currently classed as benign.  The World Health Organisation (WHO) system does not appear to recognise Stage 0 for NETs.

The most generic model for TNM staging is below but please note this could be adjusted for particular types of NET.

Primary Tumor (T)
TX: Primary tumor cannot be evaluated
T0: No evidence of primary tumour
Tis: in situ (abnormal cells are present but have not spread to neighbouring tissue; although not cancer, in situ may become cancer and is sometimes called preinvasive cancer)

T1, T2, T3 and T4 is a measure of the size of, and/or invasion/penetration by, the primary tumour and the wording varies between different NET sites. e.g. for a small intestinal NET:

T1 tumour invades mucosa or submucosa and size <=1 cm

T2 tumour invades muscularis propria or size >1 cm

T3 tumour invades subserosa

T4 tumour invades the visceral peritoneum (serosa)/other organs

For any T add (m) for multiple tumours

Regional Lymph Nodes (N)
NX: Regional lymph nodes cannot be evaluated
N0: No regional lymph node involvement
N1: regional lymph node metastasis

Distant Metastasis (M)
MX: Distant metastasis cannot be evaluated
M0: No distant metastasis
M1: Distant metastasis is present

You may occasionally see TNM staging be prefixed by lower case letters.  The most commonly used prefix is ‘p’ simply meaning the grading has been confirmed by pathology.  e.g. pT4 N1 M1

Specialists can combine the Stage to create a TNM – for example:

This slide will be updated when I get access to WHO 2017 or updated AJCC pubication.

Summary

A complex area and I hope I have condensed it sufficiently for you to understand enough for your purposes.  Despite looking very scientific, it is not an exact science. There are many variables as there always are with Neuroendocrine disease.  NENs can be very challenging for a pathologist even an experienced one who may not have encountered NENs before.  However, it is an extremely important part of initial diagnosis and also when needed during surveillance.  It is a vital tool used by Multidisciplinary Teams (MDT) in treatment plans and for prognostic purposes.  If you need to learn further, I recommend this document:

If you are interested in this subject and have one hour to spare, there is a great video here from LACNETS worth watching.

Finally – always make sure you get your pathology results at diagnosis and following any subsequent sampling.

You may benefit from reading these associated posts:

Benign vs Malignant

Incurable vs Terminal

Carcinoid vs Neuroendocrine

10 Questions for your doctor

Looking for a needle in a haystack

Thanks for reading

Ronny

I’m also active on Facebook. Like my page for even more news. Help me build up my new site here – click here and ‘Like’

Disclaimer

My Diagnosis and Treatment History

Sign up for my twitter newsletter

Check out my Podcast Interview (click and press play)

Remember ….. in the war on Neuroendocrine Cancer, let’s not forget to win the battle for better quality of life!


wego-blog-2018-winner


patients included

PLEASE SHARE THIS POST

 

Chemotherapy for Neuroendocrine Cancer


Chemotherapy and Neuroendocrine Cancer

One of the unusual aspects of Neuroendocrine Cancer is that chemotherapy is not normally considered as a ‘standard’ treatment unlike many other cancers. One exception is high grade (Grade 3) where it is often a first and/or second line therapy.  Poorly differentiated Neuroendocrine disease is normally labelled as Neuroendocrine Carcinoma (NEC) but worth pointing out there is now a Grade 3 well differentiated classification known as a ‘Grade 3 NET’ rather than Grade 3 NEC. Depending on Ki67 score, there could be differing treatment options for Grade 3 NET and Grade 3 NEC.  Read more in my articles Staging and Grading and High Grade.

Many people think Chemotherapy has a short life span due to recent advances in medical science, some citing Immunotherapy as it’s replacement. However, it’s far too early to write off chemotherapy which is still used in many scenarios and remains a tool in the arsenal of cancer treatments and is predicted to do for some time yet.  See more informed reporting about this below.

Which Chemo for which Neuroendocrine Cancer type and grade/differentiation? 

The type of chemo or the combination of different treatments will often depend on the tumour type and anatomical location involved but may include (but not limited to): Capecitabine (Xeloda), Temozolomide (Temodal), Fluorouracil (5-FU), Oxaliplatin (Eloxatin) Cisplatin, Etoposide (Etopophos, Vepesid), Carboplatin, Streptozotocin (Zanosar). Some of these may be given as a combination treatment, e.g. CAPecitabine and TEMozolomide (CAPTEM). many as a combo treatment.  There is a useful article explaining the role of Ki-67 in determining optimal chemotherapy in high grade neuroendocrine tumors.

Cytotoxic chemotherapy is often inadequate for treatment of Grade 1 and 2 (well differentiated) Neuroendocrine tumours which have a low proliferation index. Chemotherapy does not appear to like their slow cytokinetic growth. However,  it tends to work better on certain parts of the anatomy than others, e.g. pancreatic NETs and Lung NETs.  Of interest is a statistic from NET Research Foundation indicating that 23% of patients who were to be prescribed chemo had their treatment changed to a non-chemo option following a Ga68 PET scan.  Read more here.

For second line therapy (including for well differentiated NETs where other conventional treatments are not working), chemo may be given.  These include (but not limited to) Capecitabine, Temozolomide, Bevacizumab, Xelox, Folfox.  There are other specialist chemos for Mixed Neuroendocrine Non-Neuroendocrine Neoplasms (MiNEN).

‘Horses for Courses’ – Chemo is sometimes used for well differentiated lower grade NETs.

There’s a myth that circulates the NET patient forums along the lines of “chemotherapy does not work for NETs“.  That’s not entirely true but most will not get chemotherapy and this can often lead to confusion in those with Stage 4 cancer when asked by others why they are not receiving chemo.

Capecitabine plus Temozolomide (CAPTEM for short) is fast becoming the standarad chemotherapy treatment when it is required with certain lower grade NETs.  Dr Robert Fine says the results of the CAPTEM trial showed “tremendous responses in every neuroendocrine tumor”. The treatment elicited a response rate of 45% and a stable disease rate of 52% including those with certain types of NETs and pituitary tumours – types of neuroendocrine tumour that are notoriously ‘chemoresistant’.  You can read more about this here (click here) and you can also listen to Dr Fine talking about this on a short You Tube video clip – (click here).  Clearly it’s true that it’s not going to work for all.

Other CAPTEM Resources:

  • There’s a very interesting report on the use of CAPTEM in NETs – (click here)
  • CAPTEM Trial Document – (click here)

PRRT and Chemo Combo Treatment

In Australia, they’re also using a combo treatment of chemo (CAPTEM) and PRRT – I blogged about this click here.

“Chinese Dumplings”

There’s also a useful surgical technique which includes the use of intra-operative chemo, known as “Chinese Dumplings” – I wrote about this click here.

Chemo Embolisation

My Oncologist did mention Chemotherapy on my initial meeting, that was a shock and realisation I had something serious.  However, that never transpired but I was once scheduled to have a chemo-embolisation (or TACE, Trans-arterial Chemo Embolisation). Clearly TACE is more targeted than conventional and generally systemic chemotherapy techniques. Perhaps that my Oncologist actually meant.  The chemo-embolisation never transpired either (long story).

Chemotherapy vs Targeted Biological Agents and Somatostatin Analogues

I often see people describing Somatostatin Analogues (Lanreotide/Octreotide), Afinitor (Everolimus) and Sutent (Sunitinib) as chemo but that’s isn’t technically correct, and I’ve yet to find a NET Specialist or a NET Specialist Organisation who classifies these drugs as chemo.  See my article “Chemo or not Chemo” (click here).

Future of Chemo?

A lot is written about how much longer chemo will be around.  It gets a bad press – I suspect mainly due to the side effects.  There are suggestions that it will eventually be replaced by Immunotherapy and other treatments downstream.  However, immunotherapy is really still in its infancy and there remains a lack of long term data on success rates and side effects.  I suspect chemo will be around for a while longer, particularly for cancers where it has a track record of curing according to ASCO.  Very recently (June 2018), cancer experts said that chemo will be around for a long time yet – read more here

None of the content of this post should be interpreted as advice or a  recommendation for chemotherapy. If in doubt about suitability for any form of chemo, or the type you have been prescribed, patients should seek the advice of their treating doctor or NET specialist.

Thanks for reading

Ronny

I’m also active on Facebook.  Like my page for even more news.  I’m also building up this site here: Ronny Allan

Disclaimer

My Diagnosis and Treatment History

Most Popular Posts

Sign up for my twitter newsletter

Remember ….. in the war on Neuroendocrine Cancer, let’s not forget to win the battle for better quality of life!

patients included
Please Share this post for Neuroendocrine Cancer awareness and to help another patient